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The finite element formulation for general viscoplastic
behavior (including nonlinear viscoelasticity) is based on the
displacement method and is derived from a weighted equilibrium
-rate equation. A pi-level solution algorithm, which enables
(fast) convergence in problems where inelastic deformations
dominate, has been developed to solve the pseudo-force form of
the nonlinear governing equations. At each time step, 2a
successive substituion type iteration is applied to the system
(global) equations of motion while a Newton—Raphson or tangent
type nonlinear equation solver combined with the a-method of
numerical time integration is applied to the constitutive
equation at the Gauss integration points in the finite element
grid. Variable interface conditions between the ice feature
and the structure can be simulated to bound the effects of
interface adfreeze and friction. In particular, a "free"
interface condition, which represents no interface adfreeze Or
friction, is simulated by an adaptive procedure that prevents
normal tensile stresses from developing at the interface.

The interaction of an ice sheet with a vertically faced
indenter is an important ioading condition in the Arctic for
cylindrical structures and for conical structures with
grounded rubble pile or accreted ice foot. Numerical
simulations are performed under plane stress conditions to
study the sea jce indentation problem under steady state creep
conditions. The major factors affecting ice load prediction
during indentation are identified and the relative magnitude
of the various sources of uncertainty is assessed. Among the
factors addressed are: (i) choice of material model for
describing the mechanical behavior of sea ice, i.e., isotropic
versus anisotropic, pressure—sensitive versus pressure
—insensitve and plastic versus nonlinear viscoelastic; (ii)
influence of natural variability in the mechanical properties
of sea ice; (iii) the choice between approximate (bound and
strain path) and "exact" methods of analysis for predicting
global forces and local pressures and the ability of each to
model interface adfreeze and friction, and spatial and
temporal variability of the strainrate field; (iv) the
influence of grounded rubble pile or accreted ice foot; and
{(v) the prediction of local pressures OI pressure-area curves
that are used in the design of structural members.



FOREWORD

The grant by The Standard 0Oil Company (Ohio) to establish
a Center for Scientific Excellence in Offshore Engineering at
MIT is shared by the Department of Civil Engineering and the
Department of Ocean Engineering. Initiated in September 1983,
the Center provides $400,000 per year to support coordinated
research in collaboration with Sohio to develop the technology
necessary for an overall evaluation of alternative structural
concepts for offshore oil exploration and production platforms
located in the extreme environmental conditions of the North
American Arctic. This interdisciplinary effort encompasses
basic and applied research on ice & structural, geotechnical,
risk & reliability, and hydrodynamic aspects of Arctic
offshore engineering.

This report summarizes the progress todate on a project
entitled "Numerical Modeling of Ice-Strucutre Interaction®
funded by the Center at a level of $75,000 per year for the
period 1983-88 and by the Minerals Management Service of the
U.S. Department of the Interior at a level of $60,000 per year
for the period 1984-87. The project involves the following
three major areas of study:

® Development of constitutive models to characterize the
mechanical behavior of sea ice.

® Development of finite element methods of analysis to
account for the simultaneous occurrence of viscous
(rate-dependent) and fracture behavior in ice, and
variable conditions of contact between ice and
structure.

® Numerical simulation of ice-structure interaction
processes for selected ice features and structural
configurations to predict global forces and local
pressures.

The principal investigators for the project are Professor S.
Shyam Sunder and Professor Jerome J. Connor. The following
graduate students have participated in this project: Dr.
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CHAPTER ONE

INTRODUCTION

1.1 BACKGROUND

As much as 30-40 percent of the U.S. undiscovered
hydrocarbon recoverable reserves, comparable in magnitude to
those of the Persian Gulf, are estimated to lie in the Arctic.
The extraction of these resources in an economical and safe
manner poses many technical challenges. The cost of building
fixed offshore platforms for drilling and production in the
Arctic is signifiéantly influenced by ice loads.

Exciting new structural concepts for exploration and
production platforms are now under intensive development to
meet the severe design problems for fixed offshore platforms
in the Arctic: a very short open water season, which
necessitates preconstruction and towing to the site; massive
global ice forces and extremely high local pressures; and
often relatively weak foundation soils. In deeper waters,
gravity caisson and conical strutures will probably replace
the artificial islands that have been constructed thus far in
shallow water. Conical structures are attractive since they
induce flexural failures in ice, a material whose flexural
strength is significantly lower than its compressive

strength.
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Both concrete and steel are being considered as the
principal construction materials for Arctic structures. Steel
structures pose severe problems due to local buckling and
brittle fractures. New high strength lightweight concretes
with high abrasion and freezé—thaw resistance are being
developed to reduce the weight of concrete'structures. The
major design problem is obtaining suitable resistance to the
large local(ice loads (for both service and ultimate
conditions), which result not only in large-bending forces but
also in much larger punching shear stresses than considered in
current design codes. Existing numerical techniques for
predicting shear stresses are both very expensive to use and
subject to considerable inaccuracy.

The severe environment created by perennial ice features
can lead to global forces and local pressures on structures
which are several times greater than those from waves in
non-Arctic environments. Typically, two levels of ice loading
are considered for design purposes. Global ice loads govern
the overall structural geometry and dimensions as well as the
foundation design, while local ice pressures are likely to
dictate wall thickness and local framing, and may well govern
structural cost.

Most of the emphasis in research has been on predicting
global forces. Only during recent years, as the focus changed

from overall feasibility to preliminary and detailed design,
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has the importance of local pressures emerged. Recent work,

(Watt, 1983), has shown that peak local pressures may be as

high as three times the average pressure assumed for global

load.

Tt is widely recognized that significant uncertainties

exist in the ice load models in use today and that some design

loads may be overestimated by an order of magnitude. Research

is necessary to quantify the uncertainties in ice loads and to

develop improved load prediction models for the safe and

economical design of structures.

Uncertainties in existing ice load models arise primarily

from five sources:

Incomplete modeling of the mechanical behavior of ice,
including temperature and fracture effects.

Empiricism in existing theoretical models resulting
from the use of approximate analysis methods.
Inadequate modeling of thé contact forces at the
ice-structure interface.

Neglecting the effect of scale/size on material
strength.

Not accounting for the finiteness of environmental and

other forces driving the ice features.

In order to quantify these uncertainties and to better

predict global and local ice loads, numerical models are

necessary for computer simulation of ice-structure interaction

processes. In contrast to analytical methods, such models can
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realistically simulate the interaction accounting for
spatial-temporal variability in the mechanical behavior of ice
and for multiple modes of failure in ice.
The complexity of sea ice behavior is due mainly to:
o Strong dependence on fate of loading, which is
spatially and temporally variable in ice features.
¢ Simultaneous occurrence of ductile, strain-softening,
and brittle modes of deformation.
® Pressure sensitivity leading to différent strengths in
compression and tension (at moderate-to-high rates of
loading) and to melting point depression.
¢ Material anisotropy leading to strength variation by a
factor of three.
® Strong dependence on temperature, varying in first
year ice from melting point at the water interface to
perhaps -50°F at the air interface.
® Strong dependence on internal structure of ice (grain
size, fabric, brine volume, salinity, porosity), which
is spatially varying particularly in multi-year ice
features.
A key aspect in the development of constitutive models is the
need for accurate and consistent experimental data on ice,
especially to characterize its behavior relating to tensile

loading, cyclic loading, multiaxial loading, nucleation and
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interaction of cracks, material anisotropy, thermal and
structural gradients, and fracture toughness. Currently
available data is in many cases sufficient to postulate
approximate constitutive models. Numerical simulations can
help to establish the importance‘of more extensive
experimentation in quantifying ice-structure interaction
processes.

Finite element methods of analysis for simulating
ice-structure interaction processes are affected by the
following research concerns:

e Rate dependent material behavior with negligible

elastic deformation.

‘e Initiation and propagation of cracks due to fracture.

o Simultaneous occurrence of rate dependent and fracture

behavior.

e. Adfreeze bond and friction at ice-structure interface.

e Time-varying contact between ice and structure and

between fractured ice features.

@ Strain-softening of ice.

1.2 OBJECTIVES OF PRESENT RESEARCH

The overall objectives of this research are to develop
a constitutive model for sea ice and to use the model for
studying ice indentation problems. The specific contributions

include:
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(1) Development of a rate sensitive damage model for
describing the macroscale continuum behavior of sea
ice.

(2) Development of a hybrid model to characterize both
the continuum and ffacture behavior of sea ice.

(3) Development of a finite element mpdel for numerical
simulation of sea ice indentation.

(4) Development of simplified mathematical models for
predicting global ice forces and pressure-area curves

during sea ice indentation.

1.3 ORGANIZATION

The rate sensitive damage model for macroscale continuum
behavior of sea ice is described in Chapter 2. This model,
based on a nonlinear generalization of the Maxwell
differential model, is characterized by its ability to (a)
decompose the various recoverable and irrecoverable components
of strain, (b) represent continuously damaging or
strain-softening material beha&ior in the ductile to brittle
transition region, (c) capture the rate-dependent behavior of
sea ice with rate-dependent model parameters, and (d) describe
materially anisotropic mechanical behavior. Further, the
model shows strong dependency of the creep and constant
strainrate behavior. Calibration of the model is achieved
with several independent sets of data, particularly those for

first year sea ice.
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Chapter 3 presents a rate-sensitive model in stress-
strain domain for describing the macroscale fracture behavior
of sea ice. This model, unified with the continuum model of
Chapter 2, is characterized by its ability to (a) predict
first crack occurrence or nucleafion with a rate dependent
limiting tensile strain criterion, (b) distinguish the
mechanisms of multiaxial flow by creep and yielding which
leads to ultimate failure by macrocracking or fracture, and
(c) represent the yield under multiaxial states‘of stress with
a Drucker-Prager failure surface. Calibration of the model is
achieved with the limited existing experimental data base.

Chapter 4 describes two approximate methods of analysis
for predicting global and local pressures during sea ice
indentation in the creeping mode of deformation. The two
methods are the upper bound and strain path methods.
Theoretically postulated velocify fields required in the
analysis are calibrated with field measurements. The results
are compared with previously published indentation formulas.

In Chapter 5, a finite element method of analysis is
developed and applied to study sea ice indentation in the
creeping mode of deformation. The numerical algorithm is
based on a pressure-insensitive orthotropic elastic-power law
creep model for sea ice. Numerical simulations are performed
under plane stress conditions to predict the influence of (i)

interface adfreeze and friction, (ii) material anisotropy,
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(iii) variability in parameters of the material model, (iv)
rubble pile or grounded ice foot, and (v) ice sheet velocity
on global forces and local pressures generated on a rigid
cylindrical indenter. The results are compared with those
from the approximate method df analysis discussed in Chapter
4., 1Interface pressure distributions are obtained in addition
to contours of stress and strain. Pressuré—area curves are
constructed_from the results and discussed.

Chapter 6 summarizes the conclusions of this study and

provides recommendations for future research.
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CHAPTER TWO

CONTINUUM MODELING OF SEA ICE BEHAVIOR

2.1 INTRODUCTION

Ice in general, and columnar sea ice in particular, is a
very complex material which exhibits a wide range of behaviors
often at the same time. As a consequence of its occurrence .at
thermorheologically high temperatures, the macréscale
mechanical behavior of ice is strongly influenced by
temperature and rate of loading, in addition to elasticity,
plasticity, damage and fracture. In many applications ice
behaves predominantly as a continuum undergoing deformation
and a constitutive model which captures that behavior is
necessary to simulate the deformation process.

Shapiro (1978) has presented a four element nonlinear
viscoelastic model for sea ice which can be applied under
general loading conditions. Under constant strainrate tests,
this model predicts an approximately linear increase of
strength with the logarithm of strainrate which appears to
differ from available test data. Furthermore, this model
cannot simulate the post-peak decrease of stress due to
material damage.

Sinha (1978, 1979, 1983b) has proposed a simple

thermorheological model to describe the uniaxial stress-
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strain-strainrate-temperature relationship for columnar-
grained ice. The model, consisting of eight parameters,
accounts for the instantaneous elastic, delayed elastic, and
secondary creep components of strain. According to the model,
the delayed elastic strain uﬂder creep loading conditions is
directly proportional to the applied stress and grain size
while its value reaches a maximum asymptotically with time.
Calibration has been achieved with the extensive creep and
constant stressrate tests conducted on columnar—-grained ice by
him and the creep data of Brill and Camp (1961).

Michel (1981) has proposed a similar model for ice based
on dislocation theory. The model, consisting of a network of
linear springs and nonlinear dashpots with nine parameters,
has been applied under constant stress (creep) and strainrate
conditions. Unlike Sinha's model, this formulation shows a
peak followed by a stage of permanent creep at a lower stress.
Calibration with limited data from Brill and Camp (1961) and
his own tests suggests the need for adjustment of model
parameters for each test case.

Wang (1982) has proposed a four parameter semi-empirical
uniaxial model for sea ice in compression. Under constant
strainrate conditions, the model displays a peak followed by a
stage of permanent creep at arlower stress. The model has not
been extended to allow decomposition of the various strain

components. Furthermore, numerical problems associated with
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the mathematical formulation can arise under certain
conditions during constant stressrate and creep loading.
Calibration of the model has been performed with his constant
strainrate and stressrate tests and with the creep data
contained in Mellor (1980). |

Morland and Spring (1981, 1982, 1983) have investigated
viscoelastic fluid and solid relations of differential type as
well as single integral representations for the nonlinear
»viscoelastic deformation of ice. In the fluid relation the
constant stress and constant strainrate responses are neither
completely independent nor completely dependent, so reflecting
some common and some distinct properties. In the solid
relation these two responses are completely independent and,
in fact, are insufficient to determine the model without
further reductions. Mellor (1980) conjectured that the two
types of response should be dependent, which is the familiar
linear result. While the differential fluid relation is
closer to this conjecture, it cannot model anisotropy and
strain jumps. In both types it is necessary to incorporate
dependence of one or more response coefficients on both stress
and strainrate or strain respectively, and covering adequate
stress-strainrate or stress-strain domains by practical test
programs is non-trivial. On the other hand, the single
integral representation is sensitive to kernel detail, which

in turn is dependent on strainrate histroy. Calibration of
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the formulations with experimental data has been very
limited.

More recently, Karr (1984, 1985a, 1985b) has been
investigating the use of continuous damage models for
describing the uniaxial beha§ior of ice. His four parameter
model for sea ice displays a peak followed by a stage of
permanent creep at a lower stress and has been derived for
constant strainrate loading conditions. For creep loading, an
empirical approach is used in conjunction with the damage
mechanics based stress-strain law for constant strainrate
loading. The constant stressrate case has not been studied,
and the methodology for strain decomposition under general
loading conditions is unclear.

This chapter presents a rate-sensitive damage model for
describing the macroscale continuum behavior of sea ice. The
model, based on a nonlinear generalization of the Maxwell
differential model, is characterized by its ability to (a)
decompose the various recoverable and irrecoverable components
of strain, (b) represent continuously damaging or
strain-softening material behavior in the ductile to brittle
transition region, (c) capture the rate-dependent behavior of
sea ice with rate-independent model parameters, and (d)
describe materially anisotropic mechanical behavior. Further,
the model shows strong dependency of the creep and constant

strainrate behavior. Calibration of the model is achieved
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with several independent sets of data, particularly those for

first-year sea ice.

2.2 UNIAXIAL MODEL FORMULATION

The nonlinear genefalization of the two element Maxwell
fluid model consists of an elastic spring in series with a
viscous dashpot (Fig. 2.1). The rate-sensitive spring
represents recoverable strains and accounts for both
instantaneous elasticity and delayed elasticity or primary
creep. The viscous dashpot represents irrecoverable strains
associated with nonlinear viscosity or secondary creep. Both
the rate-sensitive spring and the nonlinear viscous dashpot
are affected by material damage and as a result account for
strain-softening or tertiary creep. The mathematical
formulation of the two elements is discussed in what follows.

Rate-Sensitive Elastic Spring -- Most conventional

materials are used at thermorheologically low temperatures
where their elastic properties are relatively insensitive to
rate of loading. The modulus of elasticity or Young's modulus
for such materials is obtained from tests conducted at
commonly encountered rates of loading and taken to be a
constant. However, in certain high loading rate applications,
e.g., blast and impact, it is known that the modulus of
elasticity increases with rate. As a consequence of its

occurrence at thermorheologically high temperatures, the
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elastic modulus of ice is sensitive to even "slight"
variations in rate of loading (Mellor, 1983) and cannot be
taken as a constant. If the Young's modulus for ice, E, is
defined to be the modulus value at very high rates of loading,
then the variation of effective élastic modulus, Egff, with

rate may be expressed as:
Eegf = E [1 - r exp (-BA/E & I/N)] (2.1)

where ; is the strainrate, r and A are constants, and N is the
power law index for ice. Equation 2.1 shows that the
effective modulus tends to the Young's modulus as the
strainrate approéches infinity. As the strainrate tends to
zero, the effective modulus tends to (1-r)E, and for r equal
to one, the effective modulus tends to zero. if r is zero, the
effective modulus is rate—insensi;ive and equal to the Young's
modulus. A value of r less than one is necessary to model
stress relaxation, as explained later in this chapter.

The rate-sensitive elastic spring represents recoverable
strains contributed both by instantaneous elasticity and by
delayed elasticity. By defining the total elastic strain to
be the sum of the strains due to these two components it is
possible to model the rate-sensitive spring as the series
combination of two springs, one with modulus equal to E, i.e.,
the Young's modulus, and the other with a modulus equal to Eg.

the modulus of delayed elasticity. It then follows that:
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1/EBeff = 1/E + 1/E3 {(2.2)
with:

Eq = E [1/r exp(A/E el/Ny - 1) (2.3)
Equation 2.3 shows that the modulus of delayed elasticity
tends to infinity at infinite strainrate and to [(1-r)/r1E at
zero strainrate. 1In the latter case, the modulus tends to
zero if r is one and to infinity if r is zero. Use of Eg. 2.2
shows that when the modulus of delayed elasticity is infinity,
the effective modulus equals the Young's modulus. When the
modulus of delayed elasticity is very small with respect to
the Young's modulus, the effective modulus equals the modulus
of delayed elasticity. This occurs at low strainrates.
Research on the mechanical behavior of materials at
thermorheologically high temperatures (Grant, 1971) has shown
that delayed elasticity associated with grain boundary sliding
does lead to the behavior predicted by this model.

Nonlinear Viscous Dashpot -~ The secondary creep strain,

€scs in many materials including ice is assumed to follow the
well known Glen's power law (Glen, 1955) . The mathematical

formulation of this law is as follows:

o = (A/M) egcl/N (2.4)
where A and N are the constants in Eq. 2.1, and M is a third
constant. Normally (A/M) is taken to be a single constant.

However, since A is used to describe the primary creep
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strains, an additional degree of freedom in the form of the
constant M is necessary to model secondary creep strains. The
nonlinearity is associated with the dashpot constant o/egc

which is a function of the secondary creep strainrate.

Continuous Damage Model -- In the transition from pure

ductile to pure brittle behavior under compressive loading ice
behaves as a continuum undergoing damage. Under tensile
loading the transition region is much smaller and a continuum
description of damage is of limited value. Damége in ice
jeads to tertiary creep under constant stress loading and to
strain-softening under constant strainrate loading. Damage is
almost nonexistant at very small strain and strainrate but
increases as both strain and strainrate increase. Further,
unloading a damaged material generally shows a reduction in
the effective modulus of elasticity. Thus the phenomenon
affects both the rate-sensitive spring and the nonlinear
viscous dashpot. The development here is based on the
hypothesis that this effect influences the constant A
describing the creep resistance of ice, which appears in both
the elements of the generalized Maxwell model. Defining D as
a one-dimensional damage parameter and Ap as the damaged value
of the constant A, it is possible to state that:

Ap = (1-D)A (2.5)
where D=0 in the cése of no damage, and the A's in Egs. 2.1,

2.3 and 2.4 are replaced with Ap. In general, D varies
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between zero and one. For the case of total damage, i.e.,
D=1, the stress reduces to zero. This formulation is unlike
some others which model damage with "negative" springs that
have little physical appeal and can cause numerical problems,
for example, in the form of étresses with wrong sign. The
following mathematical form describes the dependence of the
damage parameter on strain and strainrate, and satisfies the

physical constraints identified above.
D=l—[exp(—cleé)+exp(—c2é){1—exp(—cleé)}] (2.6)

where cj and cy are constants. This equation shows that as
strainrate approaches infinity D tends to one, i.e., the
material is completely damaged. Further, as strain approaches
infinity D tends to [1 - exp(—czé)], i.e., there is a limiting
value of damage at any given strainrate. The repeated use of
c1 in Eq. 2.6 is to ensure that D does not have a negative
value.

Damage in a material is directly related to microcracking
activity during deformation. Gold (1960) cites a paper by
E. Brown (1926) who noted the presence of audible "crackling"
of ice samples subject to compressive loads. Brown associated
the audible crackling with the development of cracks in ice.
He also noted that the crackling of the ice was related to the
level of the stress applied and the temperature at which the

test was conducted. In his own early research, Gold (1960)
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used a piezoelectric crystal frozen to the ice sample to
acoustically monitor the fractures which took place in the
jce. 1In his seminal paper more than a decade later, Gold
(1972) reported the results of an extensive study on the
process of failure of columnar—gfained ice. He developed
statistics on cracking activity based on visual observations
during creep tests. His distribution of cracking activity
followed an expression similar to Eq. 2.6 with strain as the
variable. Stress and temperature were identified as
additional variables that could affect cracking activity, but
they were found to have limited effect on his test results.
More recently, Zaretsky et al. (1979) and St. Lawrence and
Cole (1982) have studied in detail the acoustic emissions from
columnar-grained and fine-grained polycrystalline ice,
respectively. Observations from the above test programs lend
additional credibility to the general functional form of the
proposed damage model.

The formulation of the damage parameter in Eq. 2.6 is
appropriate under a given monotonic loading condition. For a
variable loading history the evolution of the damage parameter
is assumed to follow Miner's rule, i.e., the incremental
damage accumulation depends only on the current state of
damage and can be defined in terms of an equivalent strain at
the instantaneous strainrate. This evolution of the damage

parameter D with strain and strainrate is shown in Fig. 2.2.
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For very low strainrates the accumulation of material damage
is small and not of significance in modeling the behavior of

sea ice.

Temperature Effects -- At rates of loading where no

material damage is present in sea ice, the effect of
temperature on the stress versus secondary creep strain
relationship is characterized by an Arrhenius activation
energy law. Mellor (1983) states that for temperatures
greater than -10°C the law is not valid and that the complete
empirical relation derived from eiperiments should be used to
model the temperature dependence in such cases. Sinha (1978)
has concluded that the variation of the delayed elastic or
primary creep strain with temperature also follows an
Arrhenius law. He found the activation energy for both the
viscous flow and the delayed elastic deformation to be equal.
Noting that the Young's modulus is relatively independent of
temperature, Sinha found that creep strains obtained at
various temperatures can be combined to give a master curve at
some standard temperature.

The parameter A, which appears in Eqs. 2.1, 2.3 and 2.4,
describes the creep strains in ice and is taken to follow the
Arrhenius activation energy law to model temperature effects
below -10°C, i.e.,

A = Ay exp(Q/NRT) (2.7)

where T is the temperature in degrees Kelvin (0°C equals
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273°K), A, is a temperature independent constant, Q is the
activation energy, and R is the universal gas constant. As
the temperature reduces, the parameter A increases in value.
In consequence, the effective elastic modulus tends to the
Young's modulus and the nonlinear dashpot becomes highly
viscous. Then ice displays a purely linea; elastic material
behavior with no rate or temperature sensitivity. At the same
time, the model predicts that no continuum damage can occur in
compression. This is realistic since at such temperatures ice
behaves as a brittle material for which the transition from an
undamaged state to a state with extensive macrocracking is

almost instantaneous.

2.3. VARIABLE LOADING HISTORY SIMULATION

Governing Equations -- The rate-sensitive damage model

for the continuum behavior of sea ice assumes that the total
strainrate is the sum of the effective elastic strainrate and

the nonlinear viscous strainrate, i.e.,

€ = G/Eeff + ESC (2-8)

where egc can be expressed as uo with
w = (M/Ap)N oN-1 (2.9)
Alternatively, Eg. 2.8 can be expressed as:

Using Eq. 2.2, Egs. 2.8 and 2.10 can be rewritten in terms of
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Young's modulus and total creep strainrate, €crs in the form

given below.

e = 0/E + eop ‘ (2.11)
and
= E(e - egyp) ' (2.12)
where
tcr = 0/Eq + o | (2.13)

For an ideal creep test, the instantaneous stressrate at
the time of stress application is a Dirac delta function. Tt
follows from Eq. 2.10 that the instantaneous total strainrate
is a delta function and from Eq. 2.1 that the instantaneous
effective modulus is equal to the Young's modulus. Further,
for all time after application of the stress, the stressrate
is zero. According to Eg. 2.10 this is possible only if the
total strainrate equals the secondary creep strainrate for all
time immediately after load application. Thqs according to
the model, the ideal creep curve should exhibit no primary
creep strain. Tertiary creep strains may occur for large
stresses as the total strain increases.

The stress-strain-strainrate behavior for loading
conditions other than ideal creep cannot be obtained
analytically. A numerical solution algorithm, applicable to
constant strainrate, constant stressrate or variable loading

history, is presented in what follows.
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Solution Algorithm -- An iterative solution algorithm is

developed to solve the nonlinear goverhing equation given in
Eq. 2.12. At first the governing equation is integrated in
time between tj and tj41 to yield:

Ao = E (Ae - Aeggy) | (2.14)
where A signifies the increment in the variables over the time
increment tj+1-tij. The incremental creep strain which appears
in this equation is obtained from Eq. 2.13 with the a-method
of numerical time integration, i.e.,

Aecr = AO/Eg + At ngq Oy (2.15)
where o, is a weighted average of the stress over the
specified time interval, i.e.,

6g = (l-a) o0 + @ 05431 (2.16)
and p, is derived from Eg. 2.9 using Eq. 2.16. A value of o
greater than or equal to 0.5 results in an unconditionally
stable, implicit algorithm. The well-known trapezoidal rule
and backward Euler method are obtained with «=0.5 and a=1l,
respectively. The total strain required in the evaluation of
Ap in Eq. 2.9 is also estimated with the a-method. However,
the total strainrate required in the computation of Eq and Ap,
i.e., Ae/At, is assumed to be a constant over the specified
time interval and no weighting is necessary. This assumption
is reasonable for small values of At.

For accelerating solution convergence in problems of

interest dominated by creep strains, a numerical algorithm
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which combines a Newton-Raphson or tangent type nonlinear
equation solver with the a-method is developed. The resulting

equations are listed below:

dAe ' .
cr.k k+1 _ - k
[1 + E SBE:I] °i+l = oi + E (Ae Ascr Yy +
dAe
cr.k k
E I 17 o, (2.17)
aoi+l i+l

where Ascrk isAobtained by applying Eq. 2.15 after obtaining

the stress quantities at iteration k, and similarly:

aAecr k k
[35—1" = 1/Eq + At o uy N (2.18)

i+l

For a constant strainrate or strain controlled test, Ae
and ¢j are known. Iteration using Egs. 2.17 and 2.18 is
necessary to obtain o¢j;3 and Aegy. In the process of
computing the incremental creep strains, the primary,
secondary and tertiary creep components of strain can be
identified. For a constant stressrate or stress controlled
test, Ao and e are known. First, Eq. 2.14 is applied to
estimate Ae assuming Aecy is zero. Then iteration with Egs.
2.17 and 2.18 yields Aeggy and in general an incorrect value of
Ao. Equation 2.14 is again applied with the correct value of
Ao and the estimated Aegy to update Ae. Iteration is then
performed with Egs. 2.17 and 2.18. This procedure is repeated

until the solution converges, i.e., the stress increment
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predicted by Eq. 2.17 equals the specified stress increment.
Convergence of the iterations in Eg. 2.17 is defined to occur
when the absolute value of the relative change in stress
between iterations k and k+l is less than 0.0l1. Iteration is
also stopped if the actual sﬁress is zero at k and its
absolute value is less than 0.01 at k+l. Application of this
iterative scheme with a=1 shows that convergence is typically

obtained in~4 iterations.

2.4, CALIBRATION WITH UNIAXIAL EXPERIMENTAL DATA

The uniaxial model is calibrated with several independent
sets of experimental data obtained from constant strainrate,
creep and constant stressrate tests. In addition, predictions
of the model with respect to (a) ratio of residual stress to
peak stress versus strainrate, (b) stress relaxation, and (c)
unloading and reloading are also explored. This calibration
is based on the following values for the eight model

parameters (the universal gas constant, R=8.314 J mol=1l K-1):

E = 9.5 GPa

r = 0.98

A, = 0.00652 MPa sl/N
N =3

M = 1411.2

Q = 65,000 J mol~l
c] = 2.28x103 s

c2 = 1028 s

For the particular ice type, one of the data sets requires

that E=8.5 GPa and r=0.51 for best fit.
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Experimental data on sea ice is limited in comparison to
that on pure ice. One way to enlarge the data base is to
recognize that sea ice differs from pure ice only in the
respect that it contains brine. The salinity of sea ice, s,
is typically 3-10 ppt (parts perlthousand). The brine volume
v is related to the temperature (°C) and the gross salinity
through a general relationship derived by Frankenstein and
Garner (1967):‘

v

0.001 s (0.53 - 49.2/T) ‘ (2.19)
This equation breaks down for temperatures below =22.9°C and
also if a significant amount of pore volume is occupied by
air bubbles/gas. Brine pockets allow the ice to deform more
easily and reduce the strength of the ice. Geometrical
considefations (Weeks and Assur, 1967), similar to those in
soil mechanics, show that for horizontal loading of ice
containing vertically arranged cylindrical brine pockets the
net section stress o' is:

o' = o/[1-(v/vg)1/2] (2.20)
where ¢ is the applied gross stress. The quantity vg
corresponds physically to the brine volume at which sea ice
loses all strength. A value of Vo equal to 0.16 gives an
optimum correction for a range of experimental observations
(Sanderson, 1984). Equations 2.19 and 2.20 as well as the
Arrhenius law are used to normalize sea ice stress data when

necessary during calibration.
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Constant Strainrate Tests -— The maximum stress (for

convenience termed "strength" here) observed from constant
strainrate tests on pure columnar (s-2) ice and columnar sea
ice is plotted versus strainrate in Fig. 2.3. The data is
widely scattered and ice stréngth may vary by an order of
magnitude at any given strainrate. Normalizing the

exper imental data for temperature and salinity effects reduces
the scatter by more than a factor of two. The reference
temperature and brine volume are taken as —iO°C and 0.0,
respectively. Figure 2.4 contains this normalized data. The
solid line in the figure represents the prediction of the
rate-sensitive damage model proposed here. It is obvious that
the model captures the overall trend of the data very well.
For.strainrates greater than 10-2 s-1 the continuum model of
damage is invalid and a horizontal line representing fracture
is drawn at a stress of 5 MPa. The dashed line in the figure
is the familiar power=-law model for secondary creep in ice
which fails to model material damage resulting in strain-

-1

]

softening for strainrates between 10-4 s-1 and 10-2
Figure 2.5 shows the effects of temperature on the
strength versus strainrate behavior. The maximum strength
increases with decreasing temperature as expected and it
occurs at lower strainrates. A variation in temperature from
-10°C to -20°C appears to increase the normalized strength

from about 10.0 MPa to 14.2 MPa, which is approximately 42%.
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This is consistent with the experimental data of Schwarz and
Weeks (1977) for sea ice at -10°C and -20°C. At lower
temperature, where ice behavior is significantly brittle, it
is possible that fracture by macrocracking may limit the
strength even at strainrates.below 1072 s~1 and the peak in
the strength-strainrate curve may be elimipated. Experimental
data is currently inadequate to fully characterize this
behavior.

Wang (1982) has conducted constant strainrate tests on
columnar sea ice in the nominal strainrate range 1076 s~1 to
10-3 s-1, Examples of stress-strain curves observed by him
are contained in Fig. 2.6, while those generated by his
semi-empirical model are shown in Fig. 2.7. Figure 2.8 plots
thevpredictions of the model proposed here up to a strainrate
of 5x10-3 s~1. Comparison of the three figures shows that the
proposed model is able to capture the characteristics
displayed by the experimental data. 1In fact, the model
proposed here better fits the mean strength data contained in
Wang (1982). Further, the model correctly predicts the
observed lowering of residual stress at higher strainrates as
a result of strain-softening.

Creep Tests —-- Experimental limitations preclude the

possibility of conducting an ideal creep test. In most cases
a finite time equivalent to a few seconds is necessary to

develop the nominal creep stress. This finite rise time
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effect may be modelled in general with a time-varying stress

given by:
o(t) = o [1 - exp(-atP)] ~ (2.21)

where on is the nominal creep stress, and a, b are constants.
The rise time, ty, is defined as the time required to reach
95% of the nominal creep stress. Given the rise time,

the parameter a may be evaluated with:
a = - 4n 0.01/t,P (2.22)

According to the proposed model, the rise time governs the
extent of primary creep deformation associated with delayed
elasticity.

Figures 2.9 to 2.11 present the creep test data observed
by Sinha (1978) at a stress of 0.49 MPa and temperatures of
-41°C, -30°C and -19.8°C, respéctively. The predictions of
creep strains and creep strain recovery associated with
unloading for the model proposed here and that of Sinha (1978)
are shown by the solid lines. The rise times as well as the
finite times for unloading are indicated on the figures. The
effect of varying the rise time is shown in Fig. 2.11b. 1In
general the proposed model is able to describe the observed
data as well if not better than Sinha's model. The tests at
-30°C, Fig. 2.10, yield creep and recovery curves that are

significantly variable under the same nominal conditions,
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suggesting that most of the variability associated with the
model predictions may be linked to this factor, i.e.,
difficulty in conducting repeatable Ccreep tests. By changing
the finite rise time from 1.3 to 1.9 seconds the proposed
model is able to capture somé of the variability, the
remainder being the uncertainty in the finite rise time model
and other experimental uncertainties not accounted for. It is
also possible that some of the variability may be due to model
uncertainty.

Figure 2.12a shows the experimental creep data of Brill
and Camp (1961) for randomly oriented snow ice together with
the predictions of the current model and the model of Sinha
(1978) . Two of the curves correspond to tests at -5°C and one
to ;lO°C. It must be reiterated that the Arrhenius law loses
validity at =-5°C. The proposed model captures the overall
data trend at -10°C and for the 0.232 MPa stress case at -5°C.
The prediction is poor at -5°C for the 0.125 MPa stress case.
Sinha's model however appears to fit the data quite well. To
some extent this is made possible by the variation of grain
size, a parameter which directly influences his formulation of
the primary creep component of strain. The fit to the
experimental data can be improved if the values of some of the
model parameters are allowed to change within the limits of
variability in material properties and experimental errors.

By changing the value of b to 0.1 and using Q in the range of
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61500 J mol~l to 65500 J mol~l, Fig. 2.12b shows a better fit
to the experimental data.

Wang (1982) has generated creep curves using his
semi-empirical model for sea ice as shown in Fig. 2.13. He
found the curves to agree with experimental observations
contained in Mellor (1980). Creep curves generated by the
model proposed here are shown in Fig. 2.14. The proposed
model prévides good agreement with the curves of Wang.

Constant Stressrate Tests -— Experimental data obtained

during constant stressrate tests is limited. Figure 2.15

contains the "strengt versus étressrate data for sea ice
obtained from two independent sources. The data normalized
for temperature and salinity effects is plotted in Fig. 2.16.
The solid line in the figure is the prediction of the proposed
model. For stressrates greater than about (G.05 MPa s~1, the
fracture strainrate of 10~2 $-1 is reached only after the
stress exceeds 5 MPa, the fracture stress at this strainrate
in constant strainrate tests. Assuming that in constant
stressrate tests material failuré is governed by the fracture
strainrate, not fracture stress, the maximum stress just prior
to fracture defines the strength. The validity of this
assumption is justified since the model predicts the observed
behavior quite well. For lower stressrates, the model over
predicts the strength. A careful study of the stress-strain
curves (see Fig. 2.17) shows that while they appear to reach

their failure stress values at strain values of 1-5%, in
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fact the'stress keeps increasing further. It is therefore
possible that experimental observations are made prematurely
and as such do not reflect the actual "strength". Wang (1982)
assumed the limiting strain for constant stressrate tests to
be 1%. If this is assumed, Ehe dotted line in Fig. 2.16
captures the overall trend of the data very well even for low
stressrates.

The stress-strain curves predicted by the semi-empirical
model of Wang (1982) under consfant stressrate conditions are
shown in Fig. 2.18. Beyond a certain strain value the
solution ceases to exist. The predictions were found to agree
reasonably well with his earlier test results (Wang, 1979a).
The curves predicted by the model proposed here and shown in
Fig. 2.17 are in good agreement with Wang's curves.

Effective Elastic Modulus -- Data on the strainrate

variation of the effective elastic modulus is plentiful (see
Mellor, 1983). The experimental data of Traetteberg, Gold and
Frederking (1975) on pure columnar-grained ice at -10°C is
presented in Fig. 2.19. Predictions of the effective elastic
modulus based on the proposed model is indicated by the solid
line, which suggests an excellent match with the observed
data.

Other Model Characteristics =-- The ratio of residual

stress to peak stress ("strength") is plotted versus

strainrate in Fig. 2.20. There is an almost exponential decay
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of the ratio, and the value tends to zero as strainrate
approaches 102 -1, For strainrates below about 106 s—1,
there is virtually no damage and the ratio tends to one.

The test in which a suddenly applied constant stress is
followed by a condition in‘which the strain is kept constant
often results in a stress reduction. This phenomenon is
termed stress relaxation. Figure 2.21 shows the stress
relaxation for the proposed model during a creep test
conducted at 3 MPa. The amount of relaxation is dictated by
the numerical value of the parameter r. If r=1 and the
strainrate is zero, the effective modulus equals zero.
Equation 2.10 predicts the stressrate to be zero and thus no
stress relaxation is possible. A value of r less than one is
nécessary to model the stress relaxation phenomenon.

The simulation of unloading and reloading requires
_specification of how the unloading or reloading is to take
place. 1In a constant strainrate test, unloading could imply a
change in the sign of the constant strainrate or simply the
setting of stress equal to zero. Reloading may be defined in
similar terms. Figure 2.22 shows unloading and reloading
based on controlling strainrate, while in Figs. 2.23 and 2.24,
unloading is stress controlled while reloading is strainrate
controlled. 1In both cases, the model follows the virgin
loading curve once the effect of the unloading/reloading ends.

Hlysteresis loops are observed for low unloading rates
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(Fig. 2.24), but are hardly visible for fast unloading rates
(Fig. 2.23). This is due to the lack of time for the material
to creep at fast unloading’rates. Figure 2.25 represents a
sinusoidal variation of'stfess between zero and a prescribed
maximum value. Experimental data of Mellor and Cole (1981)
show hysteresis loops under similar test conditions. It must
be noted that the model parameters used here are for sea ice
and not pure ice used by Mellor and Cole. 1In any case, this

issue requires further study.

2.5. MULTIAXIAL MODEL FORMULATION AND CALIBRATION

Sea ice is not an isotropic material. Field observations
have shown that this type of ice, which is predominantly
columnat, has two sources of anisotropy: (a) the c-axis is
oriented perpendicular to the axis of crystal growth, and (b)
the c-axes of different crystals may show preferred azimuthal
orientation in the plane on which they lie. There is strong
evidence suggesting that the preferred azimuthal orientation
ig correlated with the instantaneous current direction just
underneath a growing ice sheet (Weeks and Gow, 1978,
Langhorne, 1982, and Langhorne, 1983). While such alignments
are common in landfast ice, observations suggest that strong
alignments can develop in pack ice when there is little
rotation of the floes relative to the current direction

(Cherepanov, 1971, and Kovacs and Morey, 1980).
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The énisotropy of sea ice strongly influences the
macromechanical behavior of first year sheet ice, while its
influence on the behavior of multi-year floes, though less
well studied, may be less. In first year sheet ice, the first
source of anisotropy leads to a fatio of vertical to
horizontal stress at constant strainrate varying from 2 to 5
(Butkovich, 1959, Peyton, 1966, Vaudrey, 1977, Sinha, 1983a,
and Frederking, 1983), while the second source of anisotropy
leads to stress ratios of 0.25-0.60 at a 45 degree azimuthal
angle to the c-axis and 0.50-0.95 at a 90 degree angle (Wang,
1979b, Vittoratos, 1979, Richter-Menge, et al., 1985, Peyton,
1968) .

Theoretical formulations which account for anisotropy in
ice with a transversely isotropic model have been developed by
Reinicke and Ralston (1977) and by Vivatrat and Chen (1985) .
The former model is based on plasficity theory and considers
ice to be a pressure sensitive material as well. On the other
hand, the latter is a pressure insensitive, elastic-power law
creep formulation.

The development presented here is pased on an orthotropic
generalization of the uniaxial, rate-sensitive damage model.
Only the continuum (i.e., flow) behavior of ice is sought to
be modelled, not the fracture behavior. Microcracking leading
to damage is also considered to represent continuum behavior.

The fracture model for ice is described in the next chapter.
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As a result of this separation, a pressure insensitive model
which predicts similar behavior in compression and tension is
studied in detail. Such a model appears to be reasonable for
sea ice as justified by experimental data.

Theoretical Formulation =-- The multiaxial generalization

of Eq. 2.11 may be expressed in matrix notation as:

=C o+ e (2.23)

Im.

where C is the linear elastic compliance matrix for an
ofthotropic material (see Appendix A), and the remaining
vectors are in general of size (6xl) in engineering notation.

To derive the relationship between the Creep strainrate
and stress vectors, an effective stress measure generalized
for orthotropic materials with identical behavior in

compression and tension is first defined.

2 ay 2 4 2 23 2
% = 3/B [ (0 x™ oyy) t 3 (ny- O22) T3 (0, Oxx)
2 2 2
+ 2a4 oxy + 2a5 oyz + 2a6 Ozx] (2.24)

with B=aj+as. This may be expressed in compact form using

matrix notation as:

6e 2 =3/8eTGo (2.25)
where G is the matrix defined in Appendix A.

The creep strainrate vector can now be related to the
stress vector by defining a scalar potential function ¢ which

obeys the associated flow rule, i.e.,
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. _ a¢
fer = 70 (2.26)
with
ceae GeN+l
p = Ed + a N+l (2.27)

where a = (M/AD)N. Combining Egs. 2.25 to 2.27 yields the
desired relationship:

€cr = 2 5* (2.28)
where
1 o N
A= 3/8 = [ = + ac_ ] (2.29)
g E e
e d
and
S* = G O (2.30)

Note that S* is not the conventional deviatoric stress vector.
It may be thought of as a pseudo deviatoric stress vector for
an anisotropic material.

The evaluation of a and Eq above requires knowledge of
the effective creep strainrate ;e:cr which can be expressed

as:

L

€ercr = B/3 T H

£ (2.31)
where H is the matrix defined in Appendix A.
Given the stress vector, the pseudo deviatoric stresses

may be obtained from Eq. 2.30. Then, applying Egs. 2.25, 2.29
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and 2.28 in succession leads to the creep strainrate vector.
Note that if a1 to ag equal one, these equations predict

isotropic material behavior.

Estimation of Multiaxial Model Parameters -- Five
uniaxial (compression) tests‘at constant strainrate are
necessary to obtain the five orthotropic model parameters: ap
to ag. Note that (i) a] can be set equal to one without loss
of generality, and (ii) there is experimental evidence which
shows that the power-law exponent N can be considered
independent of the direction of loading. For purposes of the
current derivation, it is assumed that the c—axes of the sea
ice crystals lie on the Y-z plane and that they are aligned in
the y-direction (Fig. 2.26). This implies that the x-axis
repfesents the crystal growth direction.

Tests can be conducted in the three orthogonal directions
Y, X, and z respectively, and along the three 45° axes on the
Y-z, x-y, and z-x planes respectively. It is assumed that the
uniaxial model discussed earlier refers to the y-direction.
Then, let B] to Bg represent the experimentally determined
ratios of the maximum stresses for the latter five tests,
respectively, to the maximum stress in the reference
y-direction at the same strainrate. Assuming that the tests
are performed at strainrates where damage (strain softening)
is negligible, the orthotropic model parameters may be
determined from the following equations (refer to Appendix B

for derivation):
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Figure 2.26 C-Axis Orientation.




80

n n n
8 - 8% (1-8T)
ay = - — 2 L (2.32)
n n n
B + 8) (1-87)
ay = - — 2 . (2.33)
a, = = (487" - g7y ' (2.34)
4 3 4 2 .
a. = S 4870 - g 0y (2.35)
5 6 3 1 .
a, = £ 47" - 1] (2.36)
6 6 5 -

where n=2N/(N+1). Typical ranges for the Bj's (identified in
the previous subsection) are 2-5 for By, 0.50-0.95 for By, and
0.25-0.60 for B3. Values for B4 and Bg are not generally
available in the literature. Since these two parameters
determine only the out-of-plane shear strains and stresses in
sheet ice, they have no influence on plane strain and plane
stress problems. However, the parameters will have to be
obtained in the case of three-dimensional boundary value
problems.

For a transversely isotropic material, i.e., isotropy in
the y-z plane, B3=83=1 and Ba=Bs5. As a result, aj=asz=1,
a4g=ag, the parameters ay and as are functions of only 87,
while a4 depends on both B1 and Bg. Only two uniaxial tests
are required to obtain 831 and By4; one in the x-direction and

one along the 45° axis on the X-y Or z-x planes.
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Frederking (1977) has conducted plane strain uniaxial

. compression tests on columnar-grained transversely isotropic
freshwater ice. For his type A tests, strains in the
z-direction are constrained to zero and stresses are applied
in the y-direction. The ratio {z of the plane strain‘stress
to the unconfined stress at the same strainrate is directly

related to 81 by the following equation (see Appendix C):‘

(2.37)

The equation predicts'yz to vary between 2.1 to 5.1 for
experimentally observed values of B8] ranging from 2 to 5, and
N between 3 and 4. This is consistent with Frederking's
experimental observations of yz which were close to 2 at high
strainrates and to 5 at low strainrates. In the type B tests,
strains in the x-direction are constrained to zero while
stresses are again applied in the y-direction. In this case,

the stress ratio yx is given by (see Appendix C):

11/n (2.38)

Since B1 is generally greater than one, 7¥x will be less than
approximately 1.2 for N between 3 and 4. For typical values
of By, the predicted values of yy range from 1.01 to 1.06.

This is consistent with Frederking's experiments which showed

negligible influence of x-direction confinement on stresses.
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Triaxial tests of first-year sea ice have been conducted
by Richter-Menge, Cox et al. (1985) on samples obtained from
horizontal cores in the plane of the ice sheet at angles of
0°, 90°, and 45° to the preferred c-axis orientation.
Accordihg to the orthotropicimaterial model, the ratio yy of
the maximum axial stress with a confining pressure equal to t
times the axial stress to the maximum stress in the unconfined
state at the same strainrate should be given by (refer to

Aﬁpendix C):

Ty = 1}1.' (2.39)

The shear stress (i.e., axial stress minus radial stress)
normalized by the unconfined stress is independent of =t or
confining pressure for the model and equal to one.
Experimental data for this quantity is plotted versus
confining pressure in Fig. 2.27, which shows that the sea ice
data is only moderately pressure sensitive. Thus the use of a
Pressure insensitive model appéars to be justified for sea
ice. The figure also includes data obtained by Hausler (1981)
on columnar-grained saline ice at a strainrate of 2x10~4 s-1
using a so-called "true" triaxial testing machine.

No general conclusions can be drawn as yet concerning the
pressure insensitivity of sea ice since the results of Panov

and Fokeev (1977) for natural and artifical sea ice seem to
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indicate an appreciable increase in shear stress with
confining pressure. However their tests were carried to the
"breaking point" of ice, and as such the data represents the
fracture surface and not the flow behavior of ice. On the
other hand, the triaxial behévior of pure (non-saline)
polycrystalline ice has been studied by anes (1978, 1982) and
Dhrhamvet al. (1982). The tests by Jones performed at
strainrates_of 1076 to 5x10-3 s-1 indicate up to a factor of
two increase in shear stress due to confining pressure.
Durham et al.'s tests were conducted at temperatures of -78°C
to -196°C where ice is expected to behave more as a brittle
material and to very high pressures (up to 350 MPa); Very
high yield stresses were recorded, and phase transitions to
higher density polymorphs were reached. Both these sets of
data for pure ice have limited applicability for calibration
of sea ice models since no equivalence in the triaxial
behavior of pure and sea (saline) ice has been established.
It must be noted that the plasticity based pressure sensitive
parabolic yield function of Reinicke and Ralston (1977) has
been justified with the help of Frederking's (1977) data
(which has been shown in this chapter to follow a pressure
insensitive model very well) and that the three parameter
extension of their yield function by Reinicke and Remer (1978)
has been justified on the basis of Jones's triaxial data for

pure polycrystalline ice.
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2.6. SUMMARY

This chapter has presented a rate-sensitive damage model
for describing the continuum pehavior of sea ice under
variable loading conditions. The model, based on a nonlinear
generalization of the Maxwell differential formulation, is’
characterized by its ability to (a) decompose the various
recoverable and irrecoverable components of strain, (b)
represent continuously damaging or strain-softening material
behavior in the ductile to brittle transition region, (c)
capture the rate-dependent behavior of sea ice with
rate-independent model parameters, and (d) describe materially
anisotropic mechanical behavior. Furthermore, the model shows
strong dependency of the creep and constant strainrate
behavior. Calibration of the model is achieved with several
independent sets of data, particularly those for first-year
cea ice. The following specific cénclusions can be drawn:

1. The uniaxial model developed here is described by 8
parameters. For comparable models, i.e., those of Sinha and
Michel, the number of parameters is 7 and 9 respectively. It
must be recognized that Sinha's model does not capture
material damage with strain-softening, while calibration of
Michel's model with experimental data has been very limited.

2. All parameters of the proposed model, i.e., 8 for the
uniaxial model and 5 for the orthotropic generalization, can

be determined from conventional tests conducted on ice. The
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‘experimental data base is generally adequate to determine the
model parameters. In particular, normalization of the uniaxial
strength data for salinity and temperature is a usefulvway of
including test results for pure polycrystalline ice in model
calibration. |

3. Material damage that can be described by the continuum
model proposed here is significant in the strainrate range of
2x1074 s71 to 10-2 s-1, at higher strainrates the presence of
macrocracks precludes a solely continuunm description of ice
behavior.

4. According to the proposed model, an ideal creep test
does not lead to primary Creep strains. However if the finite
rise time required to reach the nominal stress iﬁ a creep test
is ﬁaken into account, primary creep strains are simulated by
the model. Experimental eviaence appears to support this
conclusion.

5. The pressure-insensitive orthotropic model proposed
here predicts very well the plane strain uniaxial compression
tests conducted by Frederking. Further, experimental data of
Richter-Menge et al. on first-year sea ice and that of Hausler
on saline ice indicate that sea ice is only moderately
pressure sensitive in comparison with pure ploycrystalline ice
which is highly pressure-sensitive.

Additional research is needed to resolve several

questions, including (a) the presence or lack thereof of
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primary(creep strains in ideal creep tests, (b) the possible
pressure sensitivity of the damage parameter, (c) the adequacy
of the incremental damage accumulation model based on Miner's
rule particularly for variable loading histories, (d) the
generation of hysteresis lOOps'during unloading/reloading and
cyclic loading, (e) the value of peak stress at failure in
stress-strain curves obtained from tests coﬁducted at low
stressrates (i.e., lower than 0.1 MPa s-1), (f) the extent of
stress relaxation in sea ice, and (g) the equivalence, if any,
in the triaxial behavior of pure and sea ice. Both
experimental and theoretical research is very much needed to
pbetter characterize the multiaxial behavior of sea ice

particularly under cyclic loading.
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CHAPTER THREE

YIELDING AND FRACTURE MODELING OF SEA ICE BEHAVIOR

3.1 INTRODUCTION

Field observations of sea ice indentation on offshore
. structures in the Arctic show that fracture processes are a
major factor in ice-structure interaction.

In most applications ice behaves as a material exhibiting
both continuum deformation and cracking activity.
Microcracking activity can be efféctively idealized as
continuum behavior and represented by models describing
multiaxial flow by creep with appropriate modifications to
account for damage due to microcracking. This damage leads to
strain-softening in constant»strainrate tests in compression
and to tertiary creep strains in compressive creep tests. On
the other - hand, macrocracking activity leading to failure of
the material at macroscale is a separate behavioral mechanism.
A constitutive model that captures both the mechanisms of
multiaxial flow by creep and ultimate failure by fracture or
macrocracking is necessary to simulate.the deformation process
in ice. Previous modeling work directly relevant to the
development of such a constitutive model is limited since most
investigators have treated ice as éither a plastic or a

viscoelastic material under multiaxial states of stress.
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These models do not distinguish the mechanisms of floﬁ and
fracture.

A rate-sensitive model in stress-strain domain for
describing the macroscale yielding and fracture behavior of
sea 1ice is dicussed in this chépter. The model, unified with
a rate-sensitive damage model developed in ;he previous
chapter for the continuum behavior of sea ice, is
characterized by its ability to (a) predict first crack
occurrence with a rate-dependent limiting tensile strain
criterion, (b) represent fracture under multiaxial states of
stress with a Drucker-Prager failure surface, and (c)
distinguish the mechanisms of multiaxial flow by creep and
ultimate failure by macrocracking leading to yielding or
fracture. Calibration of the model is achieved with the

limited existing experimental data base.

3.2 PREDICTION OF FIRST CRACK OCCURRENCE

The occurrence of first cracks in ice under compressive
creep conditions in the laboratory has been studied by Gold
(1972). Based on the assumption that grain boundary shear or
sliding can be associated with a delayed elastic effect, Sinha
(1982) postulated that delayed elasticity can be linked to
crack nucleation. With the help of his mathematical model for
delayed elasticity and the experimental data of Gold, he
showed that for S-2 ice of grain size 4.5 mm cracks begin to
form if the delayed elastic strain exceeds 1.04x10"4. The

time to formation of first crack based on Gold's laboratory
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experiments and Sinha's delayed elastic strain criterion is
plotted in Fig. 3.1.

A suddenly applied constant load case, i.e., creep, is
not representative of loading conditions on offshore
structures. A constant stfainrate or stress-rate condition
may be more realistic. Sanderson and Child (1984) consider
the prediction of first crack occurrencé under constant
stressratg loading conditions using the principle of
superposition, which Sinha (1983b) has shown to be valid for
"jcelike" materials under mopotonically increasing stress, and
the delayed elastic strain criterion. They predict that first
cracks in pure S-2 ice at typical stress-rates of
0.010-0.035 kPa s~1 should occur at a stress of 0.6-0.7 MPa
and at extreme stress-rates of 1-5 kPa s—1, may occur at
1.3-1.8 MPa (Figs. 3.2 and 3.3). For sea ice, the stress
levels are corrected by altefing the net section stress due to
brine volume based on the theory of Frankenstein and Garner
(1967). The corresponding stresses are 0.4 MPa and 0.8-1.1
MPa (Fig. 3.4).

In this chapter, a rate-dependent limiting tensile strain
criterion is developed to predict first crack occurrence in
ice. This development recognizes that fracture in ice
manifests itself in terms of tensile cracking and crushing in
compression. Experimental evidence shows that ice is weaker

in tension than in compression and further that fracture may
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occur in tension even though in compression the material
behaves as a continuum.

Schulson (1979, 1984a, 1984c) and Currier and Schulson
(1982) have studied the brittle to ductile transition in
polycrystalline ice under tension. Schulson proposes that the
tensile behavior of ice can be considered in terms of a stress
for crack nucleation and a stress for crack propagation.

Based on experimental data obtained by Hawkes and Mellor
(1972) and by him, he concludes that the tensile strength of
coarsely grained aggregates (greater than 1.5 mm) is
controlled by crack nucleation while that of more finely
grained material appears to be controlled by crack
propagation. 1In the former cases, which is more appropiate
for columnar sea ice, the tensile strength actually represents
fracture.

Schulson (1984b, personal éommunication) has more
recently been investigating the brittle to ductile transition
in polycrystalline ice under compression. His theory for
tensile behavior has been extended to account for the
rate-dependent behavior of the compressive crack nucleation
strength. Further his model tends to indicate that the ratio
of crack propagation strengthé in compression and tension to
be nearly 8, the number for Griffith materials.

The strength versus strainrate data of Ashby and

Cooksley-Hallam for pure ice contained in Palmer et al. (1982)
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is shown in Fig. 3.5. This figure shows that the ratio of
compressive to tensile strength is about 3 when crack
nucleation governs both failures, and that fracture in tension
occurs at much smaller strainrates than that in compression.
This data, which appears té be more appropriate for typically
encountered sea ice, has been used in the model development
here.

The stress—strain—strainrate behavior in uniaxial tension
prior to fracture is considered to be identical to that under
uniaxial compression. Hawkes and Mellor (1972) justify this
assumption for creep data. For strainrates less than
5x10~8 s~1 (i.e., tension 'strength' of 0.48 MPa for pure ice
and 0.28 MPa for sea ice), ice does not fracture in tension.
For high strainrates, tensile cracking occurs at a constant
stress, O¢ps, of 2.0 MPa. For strainrates greater than
5x10-8 s‘l, the tensile fracture strength of ice is modelled

as:

(3.1)

where B=176 MPa sl1/N and is obtained from Eg. 3.1 with the

known value of the tensile fracture stress at the ductile to
brittle transition strainrate. The resulting model shown in
Fig. 3.6 very closely resembles Fig. 3.5. The stress-strain

behavior predicted by the model is shown in Fig. 3.7 and the




Stress (MPa)

97

k3 1 i i i
10 1~ =
fracture.
compression
X3 - '
fracture
T ' tension
1 - amnd
0.1 L~ ! ! | 1 1 : ! 1 1
10”10 1078 1078 1074 1072 10°

1

Strainrate (s~

)

Figure 3.5 Strength of Pure Ice In Uniaxial Compression

- and Tension at -10°C (Palmer et al.,

1982)




Strength (MPa)

10

10

10

10~

10

98

COMPRESSION TENSION

TENSION FRACTURE

Figure 3.6

Strainrate (s

)

Strength of Columnar Ice.

CREEP TENSILE
and
COMPRESSION
FRACTURE
-10 1078 1076 1074 1072 10°
1




Stress (MPa)

99

Figure 3.7

1 2 3 4

Strain (x10°)

Stress-Strain Plots Under Constant Strainrate

for Proposed Model with Fracture.




100

tensile fracture strain is plotted aé a function of strainrate
in Fig. 3.8.

The prediction of first crack occurrence under uniaxial
compressive creep loading is based on the hypothesis that the
crack nucleates due to the‘lateral tensile strain resulting
from the Poisson effect of elasticity and the

incompressibility condition of flow, i.e.,

€¢ v €g + (Ec - €g)/2 (3.2)

and

€t

;;c/z (3.3)

where v is the Poisson ratio, the subscripts, t and.c, refer
respectively to the total tensile and compressive strain and
étrainrates, and e refers to the instantaneous elastic strain
in compression. The first crack is postulated to occur when
the lateral tensile strain équals the strain for tensile
fracture at the instantaneous strainrate as given in Fig. 3.8.
This is the rate-dependent limiting tensile strain criterion
for first crack occurrence or nucleation.

Figure 3.1 contains the prediction of first cracks for
creep tests using the model postulated here. Comparison with
the experimental data of Gold shows that the proposed
criterion captures the overall trend of the data very well.
In particular, the time to first crack asymptotically

approaches infinity as the compressive stress reduces to
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0.48 MPa. The choice of stress-strainrate at which ice
transits from ductile to fracture behavior in tension ; i.e.,
0.48 MPa and 5x10-8 g-1, determines this asymptote. Data
scatter may be due to several reasons, including model
uncertainty. However, two sources stand out. One, the finite
rise time of about two seconds required for the applied 1load
to reach the constant stress state for cfeep, and two,
uncertainfies associated with the identification/definition of
"first" cfack. The limiting tensile strain criterion compares
well with the delayed elastic strain criterion of Sinha for
the range of stresses considered in the figure. However, at
hiéher stresses the two criteria are in significant |
disagreement (Fig. 3.9). At the compressive fracture stress
of 5.0 MPa, the proposed model predicts almost zero time to
firét crack since no creep can occur under this load.

Figure 3.2 contains the prediction of first cracks under
constant stress-rate conditions. The agreement between
Sanderson and Child's analysis based on the delayed elastic
strain criterion and the present criterion is very good in
general. However, the model predictions differ considerably
at high stressrates. At infinite stress-rate, the stress at
first crack is limited by the compressive fracture stress of
5.0 MPa. This is predicted by the postulated fracture
criterion. Figures 3.3 and 3.4 show that for typical

stress-rates the stress at first crack is virtually unchanged
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for pure ice, 0.64-0.71 MPa, and somewhat higher for sea ice,
0.37-0.41 MPa. For extreme stress-rates, the stress is lower
for pure ice but virtually unchanged for sea ice, i.e.,
1.1-1.5 MPa and 0.6~-0.9 MPa, respectively. The findings for
pure and sea ice differ since the brine volume correction of
strength for sea ice affects the tensile fracture strain in a
complex manner. Strictly, the model parémeters used in this
work are appropriate only for sea ice even though stresses
have been normalized for brine volume, since the effect of
brine on the strains is not taken into account. For example,

the strain at peak stress for constant strainrate tests of

pure ice is about 1% while that for sea ice is about 0.1l%.

3.3 MULTIAXIAL MODEL FORMULATION

Iin uniaxial tension, the stress to nucleate a crack,

i.e., the yield stress, is the fracture stress, and its

variation with strainrate has been mathematically modelled in

Eq. 3.1. In uniaxial compression, ice behaves as a continuum
up to a strainrate of 10-2 s-1., However, cracks do form as a
result of lateral tensile strains. The compressive stress at

which the first crack nucleates is defined to be the "yield"
stress in compression ogp. Once this stress is reached, the
material continues to sustain compressive load but loses its
ability to carry tensile loads in the transverse direction if
applied. This is a realistic assumption and is often used in

modeling concrete behavior (ASCE, 1982). Thus, the
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compressive "yield" stress at which the first crack nucleates
defines a second point on the "yield" or "fracture" surface.
For strainrates greater than 10-2 g1 in compression, ice
fractures at a normalized stress, ocp, of 5 MPa. Figure 3.10
shows both the tensile fracturé strength and the compressive
"yield" strength as a function of strainratef The latter may

be expressed mathematically as:

(3.4)

where all the parameters have been previously defined.
A rate-sensitive and isotropic Drucker-Prager failure
surface is used to describe the yield/fracture behavior of

ice. The failure surface f may be expressed as:
f(o) = p I3 + ¥Jy - k (3.5)

where p and k are constants, and Iy, is the first invariant of

stress given by:
Il = Uxx + Oyy + Ozz (3-6)

and Jy is the second invariant of the deviatoric stress given

by:

J2= [ (dxx-oyy) 2+ ( OYY_Gzz) 2+(UZZ_OXX) 2] /6+ny2+oyzz+°ZX2 (3 . 7)
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The constants p and k for the Drucker-Prager model at a
given effective strainrate can be derived from two uniaxial
tests at the same constant strainrate value, one in tension

and the other in compression. The resulting equations are:

5 _
(__C_:.I}_) + 1
1 ctf
p = — p , (3.7)
Y3 ( cny _ 4
et
and
k = ocn (p - 1/¥3)  or orf (p + 1/¥3) (3.8)

Both p and k are functions of strainrate as shown in

Fig. 3.11. HNotice that for strainrate less than the ductile
to brittle transition strainrate in tension, p equals zero and
k is proportional to the effective stress for the continuum
flow. The Drucker-Prager surfaée reduces to the von Mises
flow surface in this case. Experimental data to develop an
anisotropic model for the failure surface is not available at
this time.

Figure 3.12 shows the progressive creep flow surfaces
under plane stress conditions at a specified effective
strainrate below the transition strainrate in tension. The
limiting flow surface’corresponds to the maximum stresses that
can be reached under the given loading rate. At very high

strainrates, i.e., above 10-2 s‘l, noc flow can occur.
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Instantaneous elastic deformation is followed by fracture
under all states of stress and Fig. 3.13 shows the Drucker-
Prager failure surface corresponding to this condition. At
intermediate strainrates, the limiting flow surface and the
yield/fracture surface'oveflap as shown in Fig. 3.14. 1In any
of the quadrants.where a tensile state of stress exists, if
the fracture surface is inside the limifing flow surface then
it defines the maximum attainable stress. The tensile
fracture is assumed to occur in the direction of the (largest)
tensile stress. When the state of stress is completely
compressive, the limiting flow surface is attainable.

However, if the "yield" éurface is crossed, a crack.is assumed
to nucleate in the direction of the smallest compressive
stress and no tensile stress can be sustained by the material
in that direction if applied at a later time.

The tensile strength of bubbly polycrystalline ice under
triaxial stresses has been investigated by Haynes (1973) . The
mean values of his tensile strength, obtained at an average
strainrate of approximately 10-5 s~1, as well as many
classical failure envelopes for brittle materials are shown in
Fig. 3.15. None of the theories seem to explain the data very
well. At the same strainrate, the model developed here
indicates a ratio of ogp to otf equal to approximately 1l.7.
This appears to provide the best prediction of the measured

data.
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3.4 SUMMARY

A rate-sensitive model in stress-strain domain for
describing the macroscale yielding and fracture behavior of
sea ice is dicussed in this chgpter. The model, unified with
a rate-sensitive damage model developed in the previous
chapter for the continuum behavior of sea ice, is
characterized by its ability to (a) predict first crack
occurrence with a rate-dependent limiting tensile strain
criterion, (b) represent fracture under multiaxial states of
stress with a Drucker-Prager failure surface, and (c)
distinguish the mechanisms of multiaxial flow by creep and
ultimate failure by macrocracking leading to yielding or
fracture. Calibration of the model is achieved with the
limited existing experimental data base. The following
specific conclusions can be drawn:

1. The prediction of first crack nucleation under
uniaxial compressive creep conditions using a rate-dependent
limiting tensile strain criterion for the lateral tensile
strains arising from Poisson's effect and incompressibility of
flow compares very well with the experimental data of Gold.

2. The time to first crack occurrence tends to approach
zero as the uniaxial compressive stress approaches a value
corresponding to fracture, i.e., 5.0 MPa. At these higher
stresses, the delayed elastic strain criterion of Sinha
continues to predict longer first crack nucleation times.

3. The prediction of first crack occurrence under

constant stress-rate conditions using the rate-dependent
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limiting tensile strain criterion agrees very well at low to
intermediate stressrates with the analysis of Sanderson and
Child based on the delayed elastic strain criterion. At high
stressrates, the proposed model predicts a significantly lower
stress for nucleation of tﬁe crack.

4. A rate-sensitive and isotropic Drucker-Prager failure
surface is used to describe yield of ice under compressive
states of stress and fracture of ice whenever a tensile stress
is present. The constants of the model are derived from two
uniaxial tests, one in tension and the other in compression.
In the latter case, the compressive stress at which the first
crack nucleates using the rate-dependent limiting tensile
strain criterion defines the "yield" point.

5. The ratio of the yield stress in uniaxial compression
to the fracture stress in uniaxial tension obtained from the
Drucker-Prager formulation appears to provide the best match
to data from the tensile triaxial tests of Haynes.

Additional research is needed to address the following
concerns: (a) the influence of temperature on the fracture
strength in tension and compression and the strain and
strainrate at which it occurs, (b) expérimental data under
biaxial and triaxial loading conditions to better define the
failure surface defining yield in compression and fracture in
tension, and its use in the development of an orthotropic
failure surface, and (c) the equivalence, if any, in the
strains and triaxial behavior of pure polycrystalline ice and

sea lice.
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CHAPTER FOUR

APPROXIMATE ANALYTICAL SOLUTION FOR INDENTATION

4,1 INTRODUCTION

Two levels of ice loading are typically considered in the
design of drilling and production platforms for the Arctic.
Global ice pressures govern the overall structural geometry
and dimensions as well as the foundation design, while local
pressures are likely to dictate wall thicknesses and local
framing, and may well govern structural cost. Most of the
emphasis on ice force research has been on predicting global
forces. Only during recent years, as the focus changed from
overall feasibility to preliminary and detailed design, has
the importance of local pressures emerged. Peak local
pressures as high as three times the average global pressure
have been suggested. It is widely recognized that
uncertainties exist in ice load prediction models in use today
and that in some cases design loads may be overestimated by an
order of magnitude.

Uncertainties in existing ice load models arise primarily
from five sources: (i) incomplete modeling of the mechanical
behavior of sea ice, including temperature and fracture
effects, (ii) empiricism in existing theoretical models

resulting from the use of approximate analysis methods,
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(iii) inadequate modeling of the contact forces at the
ice-structure interface, (iv) neglecting the effect of
scale/size on material strength, and (v) not accounting for
the finiteness of environmental and other forces driving the
ice features. Both appro#imate analytical methods and more
rigorous numerical models based on the finite and boundary
element methods of analysis can be used to study ice-structure
interaction at full scale with realistic models for material
and interface behavior.

The interaction of an ice sheet with a vertically faced
(and usually rigid) indenter is an important loading condition
for cylindrical structufes and for conical structures with
grounded rubble pile or accreted ice foot. 1In general, this
indentation phenomenon is characterized by the simultaneous
occurrence of viscous (rate-dependent) and fracture behavior.
In particular, it is assumed that the structure is frozen into
an ice sheet when environmental forces start driving the
sheet. Stresses keep building up in the ice till such time a
macrocrack forms to relieve the built-up stresses. The ice
pressure on the indenter will be greatest just prior to
macrocrack formation or "break-out", and it is the prediction
of this pressure that is studied here. The modeling assumes
that prior to break-out ice deforms primarily in the creeping

mode.
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A study of ice indentation in the creeping mode is
important for two reasons: (a) creep is the predominant mode
of deformation for artificial islands in the Arctic nearshore
region during "breakout" and/or steady indentation conditions
occurring in the winter, and kb) stresses, strains, and
strainrates within the continuum resulting from creep are
necessary to predict the initiation and possibly even the
propagation.of cracks when viscous effects influence
fracture.

Approximate methods of analysis are employed first to
address the problem before taking recourse to a more complete
analysis based on the finité and/or boundary element methods
because: (1) approximate methods of analysis are several
times quicker to implement and more economical; and (2)
approximate methods of analysis provide valuable physical
insights to the indentation préblem that will help to focus
further research efforts.
| Several.theofetical models based on approximate methods
of analysis that idealize the ice sheet as an isotropic
continuum have been proposed for predicting global ice forces.
These include: (1) the upper and lower bound, plasticity type
solutions of Michel and Toussaint (1977), who assumed a von
Mises material for ice, and Croasdale et al. (1977), who
assumed a Tresca material for ice, (2) the reference stress,

power-law creep solution of Ponter et al. (1983), and (3) the
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upper bound, powerJiaw creep solutions of Bruen and Vivatrat
(1984) and Vivatrat et al. (1984). The plasticity type models
require empirical definition of an average strain rate measure
to account for the viscous behavior of ice. The reference
stress approach accounts fér the effect of variability in
material constants in an approximate sense, and the upper
bound, power-law creep solutions require accurate
specification of ice sheet kinematics. No equivalent
theoretical models exist for the case where either pure
(linear elastic) fracture or combined viscous and fracture
effects dominate. Theoretical predictions of interface
pressures are not generaily available.

Two theoretical models have been developed for predicting
indentation pressures assuming the ice sheet to be
transversely isotropic. They are: (1) the upper and lower
bound, plasticity solution df Ralston (1978), and (2) the
upper bound, power-law creep solution of Vivatrat and Chen
(1985). The former model is pressure-sensitive while the
latter is pressure-insensitive. The former model has been
incorporated in the API Bulletin 2N guidelines (1982).

This chapter discusses two approximate methods of
analysis, the upper bound and strain path methods, to study
the problem of sea ice indentation in the creeping mode of
deformation, accounting for the spatial variation of

strain-rates. The upper bound method traces its origin to
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research in plasticity theory where it has been extensively
used, while the strain path method evolved in the geotechnical
engineering field as an alternative to the stress path method
of analysis. The key difference in the two analyses is that
point stresses within the coﬁtinuum can be obtained with the
strain path method. As a result, local stresses at the
ice-structure interface can be estimated, unlike the upper
bound method which only yields an estimate of the global ice
pressure. Although the accuracy with which local stresses can
be estimatedlby the strain path method is debatable, the
method tends to provide reasonable order of magnitude
estimates. However, both methods rely on an adequate
specification of the velocity field in the ice sheet. In the
present work, this is obtained through a combination of
theoretical modeling based on fluid mechanics and field ice
movement survey data from an artificial island in the Beaufort
Sea. 1In particular, two theoretical kinematic models are
considered: one resulting from the superposition of a point
source and uniform flow (Kinematic Model A) that has been
studied previously (Bruen and Vivatrat, 1984, and Vivatrat et
al., 1984); and the other from the superposition of a doublet
and uniform flow (Kinematic Model B).

An important aspect of the analytical work is the
specification of the mechanical properties of ice. In order

to provide continuity with previous work on the topic, the
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commonly postulatea isotropic, incompressible three-
dimensional extension of the uniaxial power-law creep model is
studied. The predicted global ice pressures are compared with
those from models developed previously by other investigators,
e.g., API Bul. 2N, Ponterlet al., and Bruen & Vivatrat. The
anisotropic power-law model presented in Chapter 2 is used to

estimate the global forces based on the upper bound method.

4.2 BOUND METHOD VERSUS STRAIN PATH METHOD

In the solution of continuum mechanics problems, two
methods of converging approximations are often applied. This
involves relaxation of either the statical or the kinematic
field equations and boundary conditions. 1In plastic'limit
analysis, these dual procedures are complementary in that they
lead to arbitrarily close bounds from above and below to the
same scalar quantity. For example, by relaxing the kinematic
conditions but imposing an equilibrated field of stress, a

lower bound on the applied load can be obtained. An upper

bound (conservative) solution to a continuum mechanics problem
may be derived by relaxing the statical conditions and
boundary conditions, and using velocity fields that satisfy
the kinematic constraints for the problem. These approximate
analysis techniques are widely used in metal forming
processes. Since the upper bound method provides conservative

loading estimates, its derivation is pursued in what follows.
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By applying the principle of virtual work to a continuum
with no body forces and any kinematically admissible
displacement increment field, it is possible to obtain:

%*

* -—
[ T;du] ds = [ o, dejy AV (4.1)

S v 13

where T; are the tractions on the surface S, and o;j4 are the
stresses in the volume space V. du; are the virtual
displacements on the surface and deij are the compatible

virtual strains in the volume. From Drucker's convexity

criterion for the failure surface it follows that:

o <]
.. - ¢0,.) de,. dVv > 0. 4.2
\{ (054 j3) dejy v 2 (4.2)

where ozj and de;j represeﬁt a consistent state different from
that of ¢j4 and dejy, which in turn are also consistent.
Assuming that the superscript o and % represent the same
state, Egs. 4.1 and 4.2 reduce to:

* *
[ o%. de}

*
i av > f T,duj ds (4.3)

3 3 i

The surface integral consists of two parts; one in which the
tractions are specified (St) and the other in which
displacements are specified (Sy). Since the kinematic
constraints are satisfied, du;= dui on the surface where

displacements are prescribed. Thus,

[ %, ae¥. av > [ T;du} ds + [ T;du; 4s (4.4)

1] 1] -
\4 ST Su

Bruen and Vivatrat (1984) and Vivatrat et al. (1984) have

used the upper bound method for steady creep of ice to obtain
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the average global pressure on an indenter. In their
analysis, Eq. 4.4 has been expressed in terms of strain-rates

éij and velocities U; instead of strain and displacement

increments, i.e.,

* <% Lk

é ojy €iq AV 2 é T,U; dS + é T.U; ds (4.5)
T U

In many practical problems, the material is considered to

be incompressible and the constitutive laws relate the strains

or strain-rates to the deviatoric stresses Sjj. Then Eq. 4.5

reduces to:

* bk 3 *
é sy i3 AV 2 é T, U; dS + é T,U; ds (4.6)
T U

where S{j, %ij and Uz are the deviatoric stresses,
strain-rates and velocities obtained from an assumed
kinematically admissible velocity field. Tj and Uj are the
actual surface tractions and velocities. Upper bound
estimates of indentation pressure can be obtained by
specializing Eq. 4.5 for the problem under consideration. A
similar expression can be obtained for Eq. 4.4.

The upper boupd method described here does not make use
of the equilibrium equations for the continuum. As such,
point stresses in the continuum are unknown. In order to
obtain this information, Hill (1963) has suggested an

approximate method by which octahedral (hydrostatic) stresses

can be derived from deviatoric stress gradients using the
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equilibrium equation. The sum of the octahedral and
deviatoric stresses yields the stress field. This idea was
developed and first applied to deep penetration problems in
soil mechanics by Baligh (1975, 1984) for estimating the
far—-field stresses. These'problems are essentially strain
controlled, i.e., the strains and deformations are to a large
extent independent of the constitutive relaﬁions.

The upper bound method with its extension for evaluating
the stress field has become known in geotechnical engineering

as the strain path method of analysis. This is in contrast to

the stress path method which assumes that the statical
conditions of a problem are éssentially known and independent
of the constitutive relations. In structural engineering,
this would involve approximating an indeterminate problem as
statically determinate. The strain path method may be
considered as approximating an indeterminate problem as
kinematically determinate.

In applying the strain path method to the ice indentation
problem, the major assumption is that the strain and
strain-rate field for the ice sheet can be obtained from the
kinematic conditions with no reference to constitutive
relations or equilibrium equations. This is an approximation
and hence the derived stress field will also be approximate in
general. However, the method is computationally very

attractive when compared with a detailed finite element
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analysis. 1In addition, the method provides valuable insights
to the indentation problem (as will become clear in later
sections) which is difficult to obtain from a purely numerical
approach.

The basic steps for évaluating stresses within the ice

sheet using the strain path method are summarized below:

(a) Determine the velocity field through a combination of

‘analytical modeling and field ice movement surveys.
The velocity field describes the movement of ice
particles around the structure and should satisfy the
conservation of mass (or volume) conditions and the
kinematic boundary conditions.

(b) Compute the strain-rate field by differentiating the
velocities with respect to the spatial coordinates.

(c) Evaluate the deviatoric stress field using the
constitutive equations.

(d) Obtain octahedral stresses by spatially integrating
the equilibrium equations (the octahedral stresses
will in general be path dependent).

(e) Estimate the total stresses by summing the deviatoric
and octahedral stresses.

Then, the local stresses at the ice-structure interface can be
obtained from the total stress field, while global pressures
may be estimated with the bound method and/or by integration

of the local stress field. The degree of approximation in the
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estimated stress field can be assessed by comparing the
octahedral stresses obtained by integration along different
(i.e., orthogonal) paths and by noting the error in satisfying
the statical boundary conditions. Another way of making the
former comparison is to integrate along one path and td
compare the magnitude of fictitous body forces required for
equilibrium in the orthogonal direction with the stress
gradients in that direction. Equations describing the steps
in the strain path method are provided in the following
section after discussing the kinematic modeling of the ice

sheet.

4.3 KINEMATIC MODELING OF ICE SHEET

Both the upper bound and the strain path methods require
accurate specification of the kinematic field. For the upper
bound method, a kinematic field that is a good approximation
to the actual conditions will give an upper bound that is
closer to the actual value. For the strain path method, a
good approximation will result in better estimates of the
strain and strainrate fields which in turn will result in good
estimate of the stress fields.

The fundamental assumption of the strain path method of
analysis is that the kinematic conditions of a problem may be
satisfied without knowledge of the constitutive and

equilibrium relations for the continuum. If for such strain
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or strain-rate controlled problems an accurate velocity field
can be postulated, then the strain and strain-rate field would
follow directly from it. The velocity field can be derived
from field surveys of sheet ice movement, or from
theoretically postulated étream or potential functions.

In the study of deep penetration problems in soil
mechanics, Baligh (1975) has used theoretical velocity fields
resulting from the superposition of a series of point sources
and sinks (negative sources) with varying strength and a
uniform flow field. The derivations assume an ideal fluid
(inviscid, incompressible), steady flow (convective changes in
velocity can occur), irrotational motion (assures existence of
a velocity potential) and two-dimensional flow (in conjunction
with the incompressibility condition assures existence of a
stream function). For a two-dimensional, incompressible and
irrotational flow, the streamlines and potential lines are
orthogonal to each other and can be used interchangeably to
specify the flow kinematics.

Two theoretically postulated velocity fields are
considered in this work: one resulting from the superposition
of a single point source and uniform flow, and the other
resulting from the superposition of a doublet and uniform
flow. The former model has been studied extensively by Bruen
and Vivatrat (1984) and Vivatrat et al. (1984). 1In what

follows, the necessary mathematical equations describing the
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flow kinematics are developed for the two models. The models
are then calibrated with data on sheet ice movement obtained

from a field survey on an artifical island.

4.3.1 Theoretical Kinematic Models

" Kinematic Model A ——'Figure 4.1 shows the streamlines

resulting from the superposition of a unifqrm flow with a
point source. Point O in the figure refers to the origin of
the source while point S is the stagnation point, representing
a point of no motion. The streamline passing through the
stagnation point defines the bluff-body, i.e., the region
where the on-coming sheet of ice cannot enter as a result of
interaction with the indenter or inert ice. The indenter
radius can be taken as the distance from O to S, rg-

The streamfunction, Vv, for the flow follows from the

theory of fluid mechanics and is given by:
$ = ~-Ur sin 8§ - U rg 6 (4.7)

where U is the far field velocity associated with the uniform
flow, and (r,6) represent a polar coordinate system with
origin at O. The angle 8 is anticlockwise positive and is
zero along the direction of the uniform flow. The locus of
all points corresponding to a given streamfunction value, say
y=¢1, describes a streamline. The tangent at any point on the
streamline defines the direction of fluid velocity at the

point. Thus, there can be no flow velocity perpendicular to a
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‘Bluff Body

Figure 4.1 Streamlines for the Superposition
of a Point Source with a Uniform

Flow (Kinematic Model A).
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streamline. Under steady flow conditions, the streamline also
represents the path followed by any given particle as a
function of time.

The velocity of flow can be obtained by considering two
streamlines separated by an iﬁfinitesimal distance and
recognizing that the difference in streaqunction values

defines the flow rate. It follows that:

=2-1 23¥_ o
Ur = < 55 = Ucos 86 + U = (4.8)
= 9V _  _ ; :
Ue = a7 = U sin 6 (4.9)
The bluff-body is described‘by the following equation:
= (m-9)
g o sin g (4.10)

with the half-width of the body at r=. equal to wrg. This
model assumes that the normal velocity at the ice/bluff-body
interface is zero while the tangential’velocity is not zero in
general. The maximum velocity occurs on the bluff-body at
8=63° and is equal to 1.26 U. The bluff-body can be viewed
as consisting of a circular region of radius a representing
the indenter and another region possibly containing inert
(stationary) ice. Even if this is valid, the tangential
contact between the moving ice sheet and the half-body could
be either friction-free or possess finite frictional forces.
This imposes a statical boundary condition with which the

chosen velocity field may or may not be consistent.
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Kinematic Model B -- Figure 4.2 shows the streamlines

resulting from the superposition of a uniform flow with a
doublet. The bluff-body in this case is a circle of fadius,
ro. This represents flow past a cylindrical indenter with
contact at all points on fhe circumference.

The streamfunction and flow velocity are'given by the

following equations:

2

. r

p = - Ur sin 68 + U —% sin © (4.11)
r2

U= UIl--21cos g (4.12)

r 2
r 2

Ug= - U [1 + -2 1 sin ¢ (4.13)
r2

On the bluff-body r = rg4 which represents the indenter,

the radial velocity is zero while the tangential velocity is
equal to -2U sin 6 with a maximum of -2U at p=w/2. Once
again, the statical boundary conditions in the tangential
direction may or may not be satisfied by the chosen velocity
field.

4.3.2 Calibration with Field Ice Movement Data

The theoretical velocity fields are calibrated with field
ice movement data from an artifical island in the Beaufort
Sea, obtained over a period of seven weeks during peak winter
ice formation. The surveys were carried out over the 39

stations at least once per day, although during high movement
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Figure 4.2 Streamlineé for the Superposition
of a Doublet with a Uniform Flow

(Kinematic Model B).
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events the surveys were made every 12 hours. Not all stations
existed at the same time, and a few were removed and
repositioned four days after the survey began.

Eight sets of data representing a range of movement
magnitudes and different éirections of ice sheet movement were
studied here. A rubble pile with relatively no ice movement
surrounded the island. In one of the cases, a major
macrocrack was observed on the downstream side of sheet ice
movement.

The data showed that ice movement downstream and directly
at the back of the indenter was of the same order of magnitude
as on the upstream side, and as such should be considered part
of the ice sheet flow. Thus Kinematic Model A which considers
no flow within the bluff-body is not representative of field
conditions. Also, it cannot explain the observed downstream
macrocracking. On the other hand, Kinematic Model B predicts
movements of similar magnitude on the upstream and downstream
side, and can explain the macrocracking if tensile stresses
develop on the downstream side. The macrocracking issue for
this model is further explored in the next section. In what
follows, the accuracy with which the kinematic models
approximate the field data is discussed. For Kinematic Model
A, measured movement at points within the bluff-body are in
error by 100 percent.

The calibration is based on the following three criteria:
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(a) streamfunction values for a particle at the start and end
of the observation period should be equal under steady flow
conditions; (b) the average movement rate measured should be
approximately equal to the average of the predicted velocities
over the observation period; énd (c) the measured direction of
movement must equal the predicted bearing. The comparison in
(a) can be carried out by using a normalized variable ¥/U in
Egs. 4.7 and 4.11. For (b) it is necessary to estimate the
far-field velocity U to make the theoretical prediction. 1In
this work, the average movement rate at the farthest upstream
station is taken to be U. The average of the tangent to the
streamline at the beginning and end points gives the
theoretical bearing in case (c). The relative error measures
used in the three cases are: (a) ratio of streamfunction
value at beginning of period to that at the end of the period;
(b) ratio of average measured ﬁovement rate to average
theoretically predicted velocity; and (c) difference in
degrees of angle between measured bearing and average
theoretical bearing. For no error, the error measures should
equal one, one and zero, respectively.

Calibration with the data showed that both kinematic

models can model the streamfunction field very accurately over

their domains of applicability. For Model A the errors vary
from less than one percent in general to as much as 25

percent, even when there is no macrocrack formation. For
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Model B, the errors are generally less than one percent in all
cases except the case with macrocrack formation.

The errors in velocity predictions are much higher for
both models. ‘Some stations near the rubble pile surrounding
the structure are sighifiéantly in error due to an inadequate
modeling of the structural geometry, e.g., choice of diameter
D. In the cases affected by macrocracking: (a) separate and
large regions of the continuum are adéquately modeled by both
theoretical velocity fields, (b) Model B is in general better
than Model A. Typical errors in the velocity are on the order
of five to ten percent if the above exceptions are taken into
account.

The errors in bearing predictions are on the order of
five to ten degrees for Kinematic Model B and larger for Model
A. The discrepancies, where they are larger, can be explained
with arguments similar to that for velocities.

In summary, the following comments can be made: (a)
Kinematic Model A does not adequately model the field data
considered here; (b) Kinematic Model B provides a good
description of the measured flow field and can be used to
explain the observed macrocracking if tensile stresses develop
on the downstream side; (c) even after macrocracking, Model B
accurately models the upstream flow field; (d) the transition
from creeping behavior to macrocracking occurs for velocities

less than 1 ft/hr (85x107% m s~1); and (e) the theoretical
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‘model was able to aid detection of unusual events in the field
data such as the macrocrack formation and sudden movement of
the rubble pile at some of the stations.

In this study, attention is focussed on both the simple
kinematic models since they pfovide valuable insights to the
indentation problem. However, better models and data fitting
techniques can be applied to the ice survey data to improve
results. In particular: (i) the effective and arbitrary
geometry of the structure/rubble pile configuration can be
accounted for by combining seve:al doublets and/or source/sink
combinations; and (ii) the flow kinematics at the
ice~structure interface may be better modeled by considering a
viscous (Newtonian) fluid rather than the ideal fluid
considered here. The latter change is more important for
assessing local indentation pressures as opposed to average
global pressures. |

4.4 ICE PRESSURES FOR POWER-LAW CREEP

Both global and local pressures during sheet ice
indentation are evaluated here for the two kinematic models
using the strain path method of analysis. The isotropic,
incompressible three-dimensional extension of the uniaxial

power-law creep leads to the following constitutive model:

2l

2 ! M
s =35 ) = £ (4.14)

where S and e are the deviatoric stress and strain-rate
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tensors, respectively; ge is the effective strain-rate defined

as:

T ¢ 11/2

e = [ % &

e {(4.15)

Both the constant a and N, the power-law exponent, may be
obtained from uniaxial testing of ice as illustrated in
Chapter 2. A value of N=1 corresponds £o a viscoelastic
material, while N=, represents a rigid plastic material.
Typical values of N for sea ice range from 2.5 to 4. The
three-dimensional model assumes that the material is
incompressible and isotropié. Furthermore, Eg. 4.14 reduces to
the uniaxial equation under appropriate conditions.

In order to apply Eq. 4.14 it is necessary first to
obtain the strain-rate field from the kinematic models. This

is based on the following equations:

. AU, (4.16)
rr 3T
U U
. 1 3¢ r
€op = 38 t T (4.17)
: U U U
. Yr o 1 1 9%r Vg 9
e =2 2t 38 *r -t | (4.18)

The octahedral stresses 0pct can be obtained from the
deviatoric stresses with the help of the equilibrium

equations:
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9ij,i + by =0 (4.19)
where

gij = Si§ + Ooct $ij (4.20)
with the body force bj being zero for the problem being
solved. Substituting Eqg. 4.Zd into Eg. 4.19 and expressing the

result in polar coordinates:

3%ct - - Sy 1 35r9 _ Srr” Seo - b_ (4.21)
3k 7 3r r 96 r

30 35S 55
oct _ _ 288 . T re _ -

38 = 30 r 3T Zsre rbe (4.22)

Since the right hand side of Eqs. 4.21 and 4.22 are known,
integration of either Eg. 4.21 with respect to r or Eq. 4.22
with respect to g leads to the octahedral stress field.
However, due to the approximate nature of the kinematic field,
these two equations will yield different octahedral stress
fields in general. Thus, the integration of Egs. 4.21 and
4.22 is path dependent. The degree of error in the solution
can be assessed by comparing the octahedral stresses obtained
from integration along two orthogonal paths, or by integrating
one of the equations and obtaining the fictitious body forces
required to satisfy equilibrium in the other direction using
the computed octahedral stresses.

The total stress field in the continuum may be obtained
by summing the deviatoric and octahedral stress fields as in

Eq. 4.20. The local stresses at the ice-structure interface
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can then be obtained by substituting the appropriate
coordinates (r,9) into the total stress equations. Global
pressures are estimated with the bound method and by
integration of the local stresses around the indenter.

The results presented in this chapter are based on the
isotropic power-law creep model with the material constants
for Eq. 4.14 given below:

a = 2.215 x 10-6 (Mpa)~3 s-1

(4.23)

N =3

The global ice pressures predicted using the upper bound
method for a transversely isotropic power-lawicreep model is
given in detail in Appendix D. |

Kinematic Model A -- For the streamfunction and velocity

field defined by Egs. 4.7 to 4.9, the strain-rate field is

given by:
. __ %o
rr 2
r
éee = - érr (4.24)
e =0
reg

and the effective strain-rate is equal to:

. 2 ur,
Y3 r
The deviatoric stress field is defined with the following

equations:
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L
5 _ l: [ 2 Ur ]N
rr 3 /3 a r? (4. 26)
See = = Spy
Sra = 0

Integration of ihe equilibrium equations yields the following
octahedral gtress field: |

Joct =‘(N-l) Srr (4.27)
Since the octahedral stress field, ogctr for this kinematic
model is path independent, equilibrium is exactly satisfied in
addition to the constitutive relations, kinemati? field
equations and kinematic boundary conditions. 1In spite of
this, the statical traction boundary conditions at the
ice/bluff-body interface will in general not be satisfied by
the model.

The total stress field is given by:

orr = N Sry
5ge = (N-2)Syy (4.28)
org = 0

Four comments can be made:
(i) the maximum strain-rate occurs at the
ice/bluff-body interface at r=r,, and is equal to
U/ro or 2U/D, if D = 2ro is the indenter diameter,

(ii) the stress field decays as r~2/N, which for N=3 is

r‘2/3,




141

(iii) the stress field is axisymmetric, i.e.,
independent of 6, and
(iv) the octahedral stress is zero for a linearly

viscoelastic material (N=1).

The global pressﬁre can be estimated by the upper bound

method, assuming a frictionless ice/bluff-body interface.
This is similar to the case studied by Bruen and Vivatrat

(1984) and Eq. 4.6 reduces to:

PU < s*, e¥*. av 4.29
< \fl i5 fij (4.29)
or
P N * (sin 2/N 2 1 v %
& = [ EFH TN a5 1 s
/30 Y3 o

A second approach to estimating the global pressure

involves integration of the local stresses given by Eq. 4.28

around the bluff-body, i.e.,

P=t [ (6py cos 6 rd® + ocgg sin 0 dr) (4.31)

Using the equation for the bluff-body, Eq. 4.10, Eq. 4.31

reduces to

27-9
P = lim t | [(2-N) r_+ 2r cos 6] S__de = 0 (4.32)
9+0 9 O y rr

Thus the average global pressure is predicted to be zero,
unlike the upper bound method. If the actual frictional
forces predicted by the strain path method at the

ice/bluff-body interface are included in the upper bound
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method, it can be easily shown that the upper bound method
also predicts zero pressure. However, the bound theorems do
not apply for the case of friction with relative motion. The
implications of this finding are more fully discussed for
Kinematic Model B. |

The above simple example shows that: (i) the upper bound
global pressure estimate is very sensitive to the frictionél
forces at the ice/bluff-body interface, and (ii) in order to
correctly model the statical boundary conditions of the
problem, a complete finite element analysis is necessary. The
local stresses predicted by the strain path methpd may also be
very approximate, although order of magnitude comparisons with
the global pressures are in general likely to pe reasonable.
Local pressure evaluation is pursued only for Kinematic Model
B as it better represents the field ice movement data.

Kinematic Model B —-- The strain-rate field for the

streamfunction and velocity defined by Egs. 4.11 to 4.13 is

given below:

. 2Ur2
= cos ©
rr r3
€90 = T Cyr {4.33)

re err tan 9

and the effective strain-rate is equal to:
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E = = o : (4.34)

The deviatoric stress field can be obtained by applying Eq.

4.14 to Egs. 4.33:

ur?2 3
S., = 1 [ —= 3 g ]N cos .8
V3 Y3 r
See = ~ er_' (4.35)
S =

S tan ©
ro rr

Substituting the above equations into Eq. 4.21 and integrating
in the radial direction yields: N

doct = (N-1) Srr (4.36)
Using Egs. 4.35 and 4.36, the fictitious body force necessary
to satisfy equilibrium in the g direction (Eq. 4.22) can be

obtained:

b= (N'éi‘N’3) s_, tan (4.37)

For this kinematic model, the octahedral stresses are path
dependent, although for N=1 and N=3 the fictitious body force
is zero and equilibrium is exactly satisfied in the continuum.
However, the statical interface boundary conditions will in
general not be satisfied.

The total stress field is given by:

Ory = NSpr

(N_Z) Srr (4-38)

Q
@
(5]

]

‘Gre = Srr tan 0
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The following comments can now be made:

(i) the maximum strain-rate occurs at the
ice-structure interface, r=r,, and is equal to
2U0/ro or 4U/D,

(ii) the stress field aecays as r=3/N (not r=2/N 3sg
predicted by Kinematic Model A), which for N=3 is
1/r,
(iii) the stress field is not axisymmetric, and
(iv) the octahedral stress is zero for a linearly
viscoelastic material.

Acéording to Eg. 4.38 the radial stresses downstream of
the indenter are tensile and equal in magnitude to the
upstream compressive stresses, consistent with the material
law. The tangential stresses behave similarly for typical
values of N, although their magnitudes could be half or less
than half of the radial stresses. These are principal
stresses at 6=0. As such, it is reasonable to expect a
macrocrack formation on the downstream side of the indenter.
This is indeed borne out by the field ice movement data.

The global pressure can be estimated using the bound
method, assuming either a frictionless interface or an
interface with the frictional stresses predicted by the strain
path method. (The method doés not strictly apply for the
latter case.) In fact, the stresses predicted by the strain

path method, at the interface are opposite in direction to
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what should be normally expected. This error in the stress
field at the interface means that the results predicted with
the frictional stresses included may be wrong. The respective
mathematical expressions are derived from Eq. 4.6 for D=2rg,
and are as follows: |

No friction

1
Pl 4 N 4i2U]ﬁ (4.39)
Dt = /3 N+3 /3 a D
With friction
1 ‘
- 20 = \
P N-1 4 N
5t < "w3 l =3 77! (4.40)

V3

The ratio of Eq. 4.39 to Eq. 4.40 is equal to 4N/3(N-1), which
varies between 1.8 and 2.2 for 2.5 < N < 4. 1Intuitively,
interface friction should increase indentation pressures.
However, both kinematic models studied here predict a
significant decrease in pressure. This is because they are
derived from considerations for ideal, non-viscous fluids and
as such do not correctly model interface conditions. Even if
more exact velocity fields can be postulated theoretically,
the available field data does not provide adequate resolution
of the ice movements in the immediate vicinity of the
structure to calibrate the kinematic models. This result once
again demonstrates the importance and need for accurately

modeling frictional effects at the ice-structure interface.
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Although Eq. 4.39 is a conservative upper bound, the degree of
conservatism may be unacceptably high.

Integration of the local stresses given in Eg. 4.38
around the bluff-body yields another estimate of global
pressure accounting for the ffictional stresses of the strain
path method. This may be expressed as:

20 =

' _ 4 N
t = (N-1) [ — 7 -5

273 Y3

] (4.41)

Yl
.

Both Egs. 4.40 and 4.41 predict zero pressure for a linearly
viscoelastic material with N=1. Furthermore, the ratio of the
upper bound method to Eg. 4.41 is 6/(N+3), whicﬁ‘varies
between 0.86 and 1.09 for 2.5 < N < 4. For N=3 the ratio is
one since the strain path method has been shown to be exact in
that case.

In order to develop a feel for the magnitudes of
strain-rates, local stresses and global pressures under
typical field conditions, a range of far-field velocities U
and indenter diameters D is considered. The ice material
properties are given in Eg. 4.23. Table 4.1 presents the
maximum radial strain-rates which occur at the ice-structure
interface. For the artificial island considered in the
earlier section, the maximum strain-rate just prior to
macrocracking is on the order of 106 sec~l or less. For
strain-rates less than 10-6, experimental evidence shows that

sea ice tends to behave as a creeping material with tensile
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Table 4.1 Maximum Radial Strainrates on Ice-Structure

Inter face (sec'l).
D(ft)
U(ft/hr) 200 300 400 500
0.1 5.6x10"7 3.7x10"7 2.8x10~7 2.2x10~7
1 5.6x10-6 | 3.7x10-6 2.8x10-6 2.2x10-6
10 5.6x10-5 | 3.7x10-5 | 2.8%10"5 | 2.2x10-5
Table 4.2 Maximum Radial Stresses on Ice-Structure
Interface (psi).
D(ft)
U(ft/hr) 200 300 400 500
0.1 166 145 132 71
1 358 313 284 264
10 771 674 612 568
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and compressive strengths being approximately equal. Table 4.2
presents the maximum radial stresses on the ice-structure
interface. The local radial stresses predicted by the strain
path method are on the order of 260 psi (1.8 MPa). The radial
stresses are compressive upsfream of the indenter and tensile
on the downstream side, and are distributed in a cosinusoidal
fashion. Tables 4.3 and 4.4 present the average global
pressures using the upper bound method without friction (Eqg.
4.39) and that obtained by integrating the stress field from
the strain path method (Eq. 4.41). The pressures in the
latter case are exactly half that of the former\as expected
for N=3. The typical order of magnitude value for the global
pressure is about 270 psi (1.9 MPa) for the latter case and
540 psi (3.8 MPa) for the upper bound method without friction.
A key inference can be made based on these results: the local
and global pressures are of the same order of magnitude. The
local pressures (compressive or tensile) for the model studied
here are not several times the average global pressure. This
finding is important since it is generally believed that local

stresses can be three times the average pressure.

4.5 COMPARISON WITH OTHER STUDIES

Average global pressures during sea ice indentation can
be estimated using any one of the many predictive models
available in the literature. In this study, the global

pressures predicted by Kinematic Model B are compared with the
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Table 4.3 Average Global Pressure Using Upper Bound Method
without Friction (psi).

D(EE)
u(ft/hr) 200 300 400 500
0.1 348 304 276 256
1 750 655 595 552
10 1615 1411 1282 11190

Table 4.4 Average Global Pressure Based on Integrated Stress
Field (psi).

D(ft)
U(ft/hr) 200 300 400 500
0.1 174 152 138 128
1 375 327 298 276
10 808 706 641 595
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models of API (1982), Ponter et al. (1983), and Bruen and
Vivatrat (1984). The general form of all these models may be
expressed as:

P _ . ‘ :

EE = ¢ U(Ga) (4-42)
where ¢ is a constant depending in general on N, and o(éa) is
the uniaxial strength of ice evaluated at some average

strain-rate &5 expressed as:

U
e = , (4.43)

a %D
with ¥ being a second constant. 1In order to compare the
various formulations, ¢¥ is assumed to equal two as suggésted
by API (1982) and the comparison can therefore be based on the
parameter ¢.

The values of ¢ predicted by the four formulations under
consideration for a power-law creep model with N=3 is given in
Table 4.5. At first glance the numbers seem highly scattered,
varying from 1.91 to 7.61. However, there are some important
differences among the models. The first two formulations
apply for a flat indenter with ice pressures being allowed to
develop only on the upstream side. For the API model, the sea
ice is assumed to be columnar and the contact factor is set to
one. In the Bruen and Vivatrat model (or Kinematic Model A4),
the problem geometry (Fig. 4.1) is different from that for the

other models. In particular, the choice of indenter diameter
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Table 4.5 Comparison of Average Global Pressures for Power-Law
Creep with N=3 and Average Strain-Rate of U/2D.

Model Constraints )
Plane Strain 4.12
API
Plane Stress 3.13
Plane Strain 3.28
Ponter et al (1983)
Plane Stress 1.91
D = 2wrg 3.00
Bruen and Vivatrat
(1984) {Model A)
D=2r, 6.43

Plane Strain
(with friction) 3.81
Model B

Plane Strain
(without friction) 7.61
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is subjective. If the indenter diameter is chosen as 2;ro, ¢
is about 47% of the value for D=2ro. In the former case the
indenter is located far away (r,») from the tip of the
bluff-body with the region in between consisting of inert ice,
while in the latter case the indenter is located at the tip of
the bluff-body with the inert region downstream of the
indenter. Field data on deformation pattefns considered here
indicate that both these assumptions may be unrealistic. The ¢
factor for Model B is based on a circular indenter with
compressive stresses on the upstream side and tensile stresses
on the downstream side. This is more representative of actual
field conditions prior to breakout.

If the API and Ponter et al. models are extended to
account for downstream tensile stresses, the ¢ factors would
probably be twice as much since for the problem and material
model considered (a) tensile aﬁd compressive strengths are
equal, and (b) stress levels are equal but opposite in sign on
the upstream and downstream sides. Then, ¢ for the API model
would vary between 6.3 and 8.2 while for Ponter et al's it
would vary between 3.8 and 6.6. The upper bound estimate
without friction for Kinematic Model B yields the plane strain
solution as a result of the chosen two-dimensional kinematic
field.

In summary, it appears that for an indentation problem of

the type encountered in the field, Kinematic Model B and
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Ponter et al's reference stress method predict very similar

global ice pressures.

4.6 SUMMARY

The prediction of global and local indentation pressures

in the creeping mode of sea ice deformation, accounting for

the spatial variation of strain-rates, using the upper bound

and the

strain path methods, leads to the following specific

conclusions:

1.

Kinematid Model B better models the ice movement
survey data obtained from an artificial island in the
Beaufort Sea than Kinematic Model A.\

The maximum strain rate for Model A occurs at the
stagnation point on the ice bluff-body interface and
is equal to U/ry, while for Model B it occurs at the
same point and is equal to 2U/rg.

The stress field decays as r=2/N for Kinematic Model A
and as r-3/N for Model B. The stress field is
axisymme£ric for Model A and not so for Model B.

In the creepihg mode of ice deformation, the local ice
pressures are of the same order of magnitude as or
lower than the global pressures. The local pressures
are not several times the average global pressure as
is commonly believed. Even if the global pressures
are reduced, e.g., by a factor of three, to account

for scale (fracturing) effects, the local pressures
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based on the strain path method will only be 1.5 (and
not three) times the upper bound global pressure
neglecting interface friction. For a typical
artificial island just prior to breakout in winter,
Model B predicts a preésure of about 260 psi

(1.8 MPa).

5., Under essentially plane strain conditions, Kinematic
Model B predicts global pressures that are
intermediate between that proposed by API and Ponter
et al. For a typical artificial island just prior to
break-out with ice movements of less thani 1 ft/hr
(85x10~6 m s~1), Model B predicts a pressure
(neglecting interface friction) of approximately 530
psi (3.7 MPa).

6. The global pressures predicted by the upper bound
method are very sensitive to the statical traction
boundary conditions at the ice-structure interface.
For Kinematic Model B, assuming no friction at the
interface may lead to overconservative pressure
estimates.

A key finding of the study in this chapter is that for

the rate-dependent material models describing sea ice
. behavior, interface adfreeze and friction stresses can
significantly influence both local and global ice pressures.

This has major economic consequences for platform design.
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Incorporation of these "non-conservative” stresses within the
bound method may yield more accurate global ice pressures, but
the solutions will not necessarily be upper bounds. More
exact estimates of both local and global ice pressures using
the strain path method ma§ be obtained by postulating
kinematic models that more correctly model the interface
conditions. However, currently available field data does not
provide‘adequate resolution of the ice movements in the
immediate vicinity of the structure to calibrate such models.
In conclusion, it appears that the development of numerical
models based, for example, on the finite elament method of
analysis 1s necessary for more realistically studying
ice-structure interaction problems where both global and local

pressures are of interest.
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CHAPTER FIVE

FINITE ELEMENT ANALYSIS OF PLANE STRESS INDENTATION

5.1 INTRODUCTION

Analytical studies of ice-structure interaction reported
in the literéture have been based on classical plasticity
theory and creep limit solutions. 1In order to model material
anisotropy, spatial-temporal variation of the strainrate
field, through thickness variation of temperature, and the
occurrence of multiple failure modes, it is necessary to
resort to numerical solution procedures. Discrete element
methods of analysis such as the finite element method or the
boundary element method can be applied to solve problems with
complex contact conditions and material behavior.

This chapter discusses the development and application
of a finite element method of analysis to study sea ice
indentation in the creeping mode; Both isotropic and
transversely isotropic material models are examined.
Numerical simulations are performed under plane stress
conditions to predict the influence of (i) interface adfreeze
and friction, (ii) material anisotropy, (iii) variability in
parameters of the material model, (iv) rubble pile or grounded
ice foot, and (v) ice sheet velocity on global forces and

local pressures generated on a rigid cylindrical indenter.
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The results are compared with those obtained from the
approximate methods of analysis discussed in the previous
chapter. Interface pressure distributions are obtained in
addition to contours of stress and strain. Pressure-area

curves constructed from the results are presented.

5.2 MATERIAL MODELING

The rate-dependent material model for sea ice assumes
that the total strainrate is the sum of the elastic strainrate

and the creep or viscous strainrate, i.e.,

é =C é + Ecr | { (5.1)
where C is the linear elastic compliance matrix (see Appendix
A), and does not vary in time for an orthotropic material.
The creep component consists of primary or delayed elastic
strains, secondary creep strains and tertiary creep strains.

In general, this may be expressed as:

écr = f(o,&,ecr,T) (5.2)

where T allows for temperature dependence.

In order to provide continuity with previous work, the
isotropic, incompressible three-dimensional extension of the
uniaxial power-law creep model is extended to a general
orthotropic elastic ? power law creep model. As this model
does not model the primary or tertiary creep strains, the

theoretical formulation is slightly different from that
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presented in Chapter 2. As such, the theoretical formulation
is briefly discussed in the following paragraphs.

To derive the relationship between the creep strainrate
and stress vectors, an effective stress measure generalized
for orthotropic materials with‘identical behaviqr in

compression and tension is first defined.

2 ! 2 . 22 2, 23 2
o = 3/8 [ (oxx_oyy) 3 (oyy—ozz) T3 (0557 %y)
2 2 2
+ 2a4 oxyv + 2a5 Gyz + 2a6 %x 1
\ (5.3)

with B=ajtap. This may be expressed in compact form using

matrix notation as:

ce? =3/8 T G g (5.4)
where G is the matrix defined in-Appendix A.

Under uniaxial (compressive) loading conditions, creep in
ice is usually expressed in terms of a power law (Glen,1955).
Then, the effective strainrate and effective stress are

related by:

e = a OgN (5.5)
where a and N are constants. Comparison with the theoretical
formulation given in Chapter 2 shows that a=(M/A)N, and no
primary or tertiary creep strains are included. The

temperature dependence is included in the parameter A, as
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before, following an Arrhenius activation energy law which is
valid for temperatures less than -10°C.

The creep strainrate vector can now be related to the
effective stress vector by defining a scalar potential

function ¢ which obeys'the associated flow rule, i.e.,

«  _ 29 .
Eer 3¢ (5.6)
with ]
oE*l (5.7)
b= T

Combining Egs. 5.6, 5.7 and 5.4 yields the desired

relationship: \

écr = A S* (5.8)
where

A = 3/B a ogN-1 (5.9)
and

§* = G o (5.10)

Note that S* is not the conventional deviatoric stress vector.
It may be thought of as a pseudo deviatoric stress vector for
an anisotropic material.

Given the stress vector, the pseudo deviatoric stresses
may be obtained from Eg. 5.10. Then applying Egs. 5.4, 5.9,
and 5.8 in succession leads to the creep strainrate vector.
Note that under isotropic conditions, i.e., aj to ag equal to

one, all these equations reduce to the formulation proposed by
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Palmer (1967). Methods for obtaining the model parameters a,
N, and aj to ag have already been discussed in Chapter 2 and

will not be repeated here.

5.3 FINITE ELEMENT FORMULATION

Governing Equations =-- For general viscoplastic behavior,

which includes creep, it is convenient to work with time
derivatives of the governing equations for a solid. The
weighted equilibrium-rate equation which forms the basis of

the finite element displacement method is then given by:

BT s av=m"r (5.11)

\
where B is the strainrate - nodal velocity transformation
matrix derived from the chosen displacement expansion for the

finite element, i.e.,

1Ct e

=B

I o

(5.12)
Combining Egs. 5.11 and 5.12 with Eg. 5.1 and defining K
as the elastic stiffness matrix of the element leads to the

element equilibrium equation:

KU=2+ [BT D ecr av (5.13)

and the element stressrate - nodal velocity relations:

- D ‘;cr (5.14)

la e
[[=1

=DB
where D is the linear elastic rigidity matrix for an
orthotropic material. The global stiffness matrix Kg is

obtained from Eg. 5.13 using conventional procedures.
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Solution Algorithm -- An iterative solution algorithm is

developed to solve the pseudo-force form of the nonlinear
governing equations}givén in Egs. 5.13 and 5.14. Although the
algorithm is applied to the specific material model presented,
it can be easily generalized to account for cracking based on
the limiting tensile strain criterion discussed earlier. For
purposes-of discussion, attention is focussed at the element
level rather than the global level. At first the governing
equations are integrated in time between tj and tj4j to

yield:

K (Ui+1-Ui) = Pi+1-Pi+[ BT D (scr,i+1-gcr,i) dV  (5.15)

054i-9i = D B (Uj+1-Uj) - D (Ecr,i+l=fcr,i) (5.16)

Creep strains which appear in both equations are

nonlinear functions of stress since X in Eq. 5.8 is not a
constant. A two-level iterative algorithm is used to solve
these equations for each new time step tj41. The key steps in
the solution algorithm are as follows:

1. Compute the displacement increments from (the global
form of) Eg. 5.15 for the given loading vector. 1In
the first iteration on the equation, the incremental
creep strains are assumed to be zero.

2. Compute the incremental stresses and incremental
creep strains from Eg. 5.16 for the displacement
increments obtained in step 1 using the iterative

algorithm (lower-level iteration in k) discussed
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below. In the first iteration on this equation
assume the incremental creep strains to be zero.

3. Return to step 1 and iterate on Eq. 5.15
(higher-level iteration in j) using the incremental
creep strains obtaineé in step 2 until convergence is
achieved. Two convergence criteria are used: (a)
‘ratio of norm of displacement increment vector to
norm of displacement vector at given time step is
less—-than-or-equal-to 10-3; and (b) absolute value of

energy norm is less-than-or-equal-to 10-3, i.e.,

apl . v

R < 10-5 (5.17)
where AP refers to the entire right hand side of Eq.
5.15. The evaluation of the integral defining the
inelastic load vector is based on a Gaussian
quadrature formula. Typically, 4-6 iterations are
required for convergence at the higher level.
The evaluation of the incremental stresses and incremental
creep strains in step 2 requires the simultaneous
consideration of Eg. 5.16 and Eg. 5.8. 1In addition to a
nonlinear equation solver, a numerical time integrator is
needed to obtain results. Previous investigators (Snyder and
Bathe, 1981, Hughes and Taylor, 1978, and Krieg, 1977) have

used a simple successive substitution type algorithm to
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decouple the two equations. This involves the use of
incremental creep strains from iteration k to evaluate the
incremental stresses for iteration k+1 using Eg. 5.16. The
incremental creep strains for iteration k+l1 are evaluated with
the e-method of numerical time integration which expresses Eq.
5.8 as:

(ecr,i4l - Scr,i) = Ag S*q (tisl - ti) (5.18)
where §*a‘is a weighted average of the pseudo deviatoric
stress vector in the time interval (tj41 = ti) and A4y is
derived from a similar weighting on the effective stress.
Since G in Eq. 5.10 is independent of time, S*q4 is equél to
the product of G with the weighted average of the total stress
vector over the same time interval given by:

g = (l=a) 05 + o 0j4] (5.19)

Typical values of o lie in the range 2zero to one. A
value of « equal to zero yields the forward (explicit) Euler
method, while a equal to one yields the backward (implicit)
Euler method. Both these formulas are first-order accurate
(for linear problems in which A is a constant, and not
dependent on the effective stress), although the actual error
of the backward formula is considerably less than that of the
forward formula assuming that the former is iterated up to
convergence. A value of o equal to 0.5 yields the well-known
trapezoidal rule, also called the improved Euler's method

since it is second-order accurate. A linear stability
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analysis of the o-method shows that it is unconditionally
stable only for o greater than or equal to 0.5.

For quasi-elastic problems in which creep deformations
are not dominant, experience has shown that for small time
increments a=0.5 is more accuréte, and that for large time
increments o=l is to be preferred. However.for creep dominant
problems of .concern here, the convergence rate slows down
considerably for highly stressed elements when e=1 is used,
and more than 10 to 12 iterations may be needed for
convergence at the lower-level. This is computationally
unattractive since iteration is necessary at each integration
point within an element (four in the case of a quadrilaterél
element) and highly stressed elements may occur often in a
reasohably large finite element grid, e.g., consisting of 250
elements.

For accelerating solution convergence in creep dominant
problems of concern here, a lower-level algorithm is developed
which combines a Newton-Raphson or tangent tyée nonlinear
equation solver with the a-method. The resulting equations

are listed below (refer to Appendix E):

dAe 3Ae
[1+D—C51Ks. k+l=g. 4+D[B AU-ae_ K]+D[—CE1 Ko,
= —54T —i+l -i =t= — —cr = 36T —i+1
Zi+l —i+l (5.20)

where ££brk is obtained by applying Eg. 5.18 after obtaining

the stress quantities at iteration k, and similarly:
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dAe 4
[__::EE_]k= At o [AE + 3/8 o—l 3} §* §*T]k (5.21)

30T ¢ 35 o

—i+1 e

For the given material model, 31/30e can be obtained from Eq.
5.9. Notice that the algorithm becomes explicit for a=0 as it
should and no.iteration is required. Convergence is defined
to occur when the maximum absolﬁte value. of the relative
change in point stresses between iteration k and k+1l is less
than 0.0l. Iteration is also stopped if the actual point
stresses are zero at k and their maximum absolute value is
less than 0.01 at k+l. Application of this iterative scheme
with a=1 shows that convergence is typically obtained in 4
iterations instead of more than 10 to 12, thereby cutting down
the computational effort by approximately 50% if the increased
computational effort per iteration is accounted for.

Computer Implementation and Code Verification =-- The

generalization of the finite element analysis algorithm for
material anisotropy has been implemented in the computer code
called DECNEC (Discrete Element Computational NEtwork
Controller). A post-processor called ORION, originally
developed at the Lawrence Livermore Laboratory, can produce
graphical display of stress, strain, and strainrate contours
as well as interface pressufe distributions. The current |
implementation is a two-dimensional version for plane stress
problems. A four-noded quadrilateral element is currently

available. Although an eight-noded quadratic element is often
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preferred, accurate results can and have been obtained with
the four-noded element using a finer finite element mesh.

The accuracy of the computer code for the anisotropic
material model has been verified for the case of transverse
isotropy through the followingAtest problems:

(a) Constant strainrate unconfined compression tests in

and transverse to the plane of isétropy.

(b) Cogstant stress and constant strainrate tests with
boundary conditions similar to Frederking's (1977)
type A tests.

(c) Pure shear test with stresses applied in the plane
of isotropy.

The first test in (a) checks on the parameters a and N of the
matefial model, while the second is a check on B8} when it is
conducted at the same strainrate. The two tests in (b) are
further checks on a, N, and Bl-> For an applied constant
y—-direction stress oy, a simple analysis shows that the
lateral stress, oz, is given by (refer to Appendix F):

oz=-oyl{ay/(ag+az)-vie~{(az2+a3)/3}Erxta,/(az+az)]l (5.22)
where v is the Poisson's ratio in the pléne of isotropy and E
is the corresponding Young's modulus. This solution is wvalid
for a constant value of A, which in an average sense may be
defined as its value at steady state. Under steady state
conditions, i.e., large t, Eg. 5.22 shows that the lateral
stress is equal to aj/8 or 1-0.587™1 times the y-stress.
Application of DECNEC verified this analysis. If the

strainrate in the plane of isotropy for the second test is
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kept the same as that in (a), then the stress in the direction
of the applied strainrate must be greater than the
corresponding stress in (a) by the factor yy of Egq. 2.37.

Note that vy is a function of only 81. The pure shear test in
(c) is a check on Eg. 2.35 for ag which is a function of only
B1 in the case of transverse isotropy. Verification is
achieved by comparing the theoretical prédictions for shear
strains with the numerical results. The test conditions for
(b) and (c) are illustrated in Fig. 5.1. No checks are needed
for parameters B4 and Bg OX aq and ag since they do not

influence plane stress indentation behavior.

5.4 NUMERICAL SIMULATIONS

Description of Case Studies —-- Numerical simulations are

performed for the 20 cases identified in Table 5.1 based on
isotropic and transversely isotropic behavior of sea ice. The
first seven cases, 1 to 7, are for isotropic sea ice, where
B1=1, while the rest, 8 to 20, are for transversely isotropic
sea ice with Bj varying from 2 to 5, which are typical values
of B3 found in the field. The objectives of simulation cases
1 to 3, 8 to 10, 15 to 17, 19 and 20 are to quantify the
effect of interface adfreeze and friction on predicted
indentation pressures under different B8) values. Four values
of B equal to 1, 2, 3 and 5 are studied. For global forces,
the fixed condition provides an upper bound solution since the
ice-structure interface is considered to be infinitely strong.

The free condition corresponds to no adfreeze and friction,
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(b) Shear Test

Figure 5.1 Tests for Code Verification.




169

TABLE 5.1 - Summary Of Cases

Case | Velocity Diameter N B1 Interface
(f££/hr) (ft) Condition
1 0.64 350 3 1 Fixed
2 0.64 350 3 1 Roller
3 0.64 350 3 1 Free
4 ©0.10 350 3 1 Roller
5 1.00 350 3 1 Roller
6 0.64 1000 3 1 Roller
7 0.64 350 4 1 Roller
8 0.64 350 3 3 Fixed
9 0.64 350 3 3 Roller
10 0.64 350 3 3 Free
11 0.10 350 3 3 Roller
12 1.00 350 3 3 Roller
13 0.64 1000 3 3 Roller
14 0.64 350 4 3 Roller
15 0.64 350 3 5 Fixed
16 0.64 350 3 5 Roller
17 0.64 350 3 5 Free
18 0.64 328000 3 5 Free
19 0.64 350 3 2 Fixed
20 0.64 350 3 2 Free

Note: 1 ft 0.3048 m
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while the roller condition provides an intermediate solution.
The roller condition allows no normal motion of the finite
element nodes at the cie-structure interface but tangential
motion is not constrained. On the other hand, the free
condition allows only normal éompressive stresses to develop
at the interface. Thus the upstream side tepds to follow the
roller condition and may be modelled as such. However, the
interface nodes of the ice and the structure are completely
disconnected if a normal stress develops. This is an adaptive
process in general, but for the numerical simulations in this
study it was found adequate to disconnect the downstream
interface nodes to achieve the desired no-tension condition.

Simulation cases 4, 5, 11 and 12 study the influence of
ice sheet velocity on pressures. The chosen base velocity of
0.195 m/hr corresponds to the recorded maximum average
velocity over a twelve-hour period just prior to "breakout"
(macrocracking) for an artificial island in the Beaufort Sea.
This was selected in order to predict the maximum pressures
that the structure will experience. The basic assumption here
is that the ice pressure on the indenter will be greatest just
prior to macrocrack formation or "break-out", and that ice
deforms primarily in the creeping mode ‘prior to break-out.
Macrocracks and fracture processes will tend to relieve the
built-up stresses.

Simulation cases 6 and 13 attempt to’quantify the effect

of a grounded rubble pile or an accreted ice foot on ice
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pressures by defining a larger effective indenter diameter
(2.86 times the structural diameter). Simulation case 18 is
used to check the construction of the pressure-area curve for
large contact areas.

Simulation cases 7 and 14 study the effect of variability
in constants a and N defining the material model on ice
pressures. Two sets of the parameters a and N for sea ice
based oﬁ the work of Sanderson (1984) and Wang (1982},
respectively, are considered: N=3, a=2.125x10-© (MPa)~3 s—1;
and N=4, a=1.848x10-6 (MpPa)~4 g~l.

The elastic constants in the plane of isotropy. which
have negligible influence on the steady state solutions, are
taken to be E=9.5 GPa and v=0.33.

Numerical Implementation —-- Prior to carrying out the

above studies, it is necessary to set up the finite element
mesh, specify a time increment for the analysis, and define
the excitation.

The finite element mesh is defined such that (i) the
aspect ratio of each element is as close to one as possible,
(ii) the scatter in stresses predicted by adjacent elements at
their commmon boundary is less than 10%, and (iii) the
boundary of the ice sheet is a circle whose extent is
sufficient to simulate the infinite medium. The first
criterion is maintained by the pre-processor which makes the
radial length of each element equal to its arc length nearer
the indenter. The second criterion is controlled by

specifying the number of radial segments into which a
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quarter—-plane may be divided. A value of nine is considered
here (for an eight-noded element five or six may suffice).
The last criterion is also implemented by the pre-processor
which makes the radius of the circular boundary equal to 9.5
times the indenter radius. Aécounting for symmetry about the
z-axis, the above discretization leads to a finite element
mesh with 252 elements and 285 nodal points (Fig. 5.2). The
number of degrees-of-freedom is 476 for the fixed condition,
538 for the roller condition, and‘540 for the free condition.

The choice of time increment is made to satisfy the
conflicting requirements of accuracy and computational effort.
Accuracy, in turn, is achieved by allowing sufficient time for
the solution to reach steady state and by specifying a time
increﬁent that captures the variability in response prior to
reaching steady state. Experience with the simulations has
shown that it is appropriate to.consider a time increment
which_makes the exponential in Eg. 5.22 equal to 10-3 in 20
time steps. For typical values of A and E, the time increment
is approximately iOO S.

The chosen uniform far-field velocity listed in Table 5.1
defines the excitation here, although other types of
excitation such as environmental traction on the ice sheet can
be handled equally well. For a given time step, the
excitétion is defined in terms of an imposed displacement in
the z-direction at the far-field boﬁndary nodes. This
displacement value is made to increase linearly with time,

consistent with the chosen uniform velocity.
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Figure 5.2 Finite Element Grid.
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TABLE 5.2 - Summary Of Results

Maximum Interface

P/Dt (MPa) Normal Stress Anisotropy/
(MPa) Isotropy
Case
Max imum
Finite Modified|Finite Modified|Global Interface

Element |Upper Element |Upper Pressure |Normal

Analysis{Bound Analysis|Bound : Stress
1 2.24 2.44 0.82 0.86 1.00 1.00
2 1.77 1.87 0.98 1.05 1.00 1.00
3 0.89 0.94 0.98 1.07 1.00 1.00
4 0.94 1.01 0.52 0.57 1.00 1.00
5 2.03 2.18 1.12 1.22 1.00 1.00
6 1.23 1.32 0.68 0.74 1.00 1.00
7 2.11 2.20 1.14 1.23 1.00 1.00
8 2.41 2.62 0.87 0.95 1.08 1.06
9 1.98 2.06 1.10 1.15 1.12 1.12
10 0.99 1.03 1.13 1.17 1.11 1.15
11 1.03 1.11 0.58 0.62 1.10 1.12
12 2.33 2.39 1.29 1.34 1.15 1.15
13 1.33 1.45 0.74 0.81 1.08 1.09
14 2.57 2.43 1.43 1.36 1.22 1.25
15 2.46 2.71 0.88 0.98 1.10 1.07
16 1.99 2.13 1.14 1.19 1.12 1.16
17 1.01 1.07 1.17 1.22 1.13 1.19

18 0.10 0.11 0.11 0.12 - -
19 2.35 2.49 0.85 0.90 1.05 1.04
20 0.96 0.98 1.12 1.12 1.08 1.12

Note: The maximum interface shear stress for the fixed

condition is 0.62 MPa for B3,

0.61 MPa for B31=3 and 0.63 MPa for B81=5.

1 MPa

= 145 psi

0.60 MPa for B81=2,
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5.5 DISCUSSION OF RESULTS

Global forces —-- Table 5.2 lists the global pressures

predicted by the finite element analysis for the 20 cases of
interest. Pressure values are the global forces divided by
the indenter diameter D and ice sheet thickness t. The table
also lists the factor by which the global pressure increases
as a result of anisotropy. |

Comparing the global pressures for cases 1 to 3, 8 to 10,
15 to 17, 19 and 20, it is seen that the fixed condition does
provide an upper bound to the ice global indentation
pressures. The global pressure for the fixed condition is
greater than that for the roller condition by a factor of
about 1.22 to 1.27. In turn, the global pressure for the
roller coandition is 1.97 to 2.00 times that for the. free
condition. This spread in global pressures is indicative of
the influence of interface ffiction and adfreeze bond. The
hundred percent reduction in pressure between the roller and
free case can be explained by examining the stresses within
the ice sheet. For the roller case, the upstream and
dowﬁstream stresses are equal in magnitude and their
resultants act together in the z-direction. 1In the free case,
the downstream stresses are almost zero since the lack of
contact at the interface on this side tends to eliminate any
influence of the indenter on the ice sheet. As a result, the
downstream part of the ice sheet acts predominantly like a

rigid body. This tends to reduce global pressures by almost a
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half. In the field, due to tidal movements, the downstream
part is usually better simulated by the free condition.

The global pressures of cases 4, 5, 11 énd 12 indicate
that reducing the ice sheet velocity by a factor of 6.4 leads
to a 47-48% reduction in preséures while increasing the
velocity by a factor of 1.6 leads to a 15-18% increase in
pressures. Thus even a factor of two uncertainty in velocity
will affect the pressures by only about 20-30%.

Comparing cases 6 with 2 and 13 with 9, provide some idea
of the effect of a grounded rubble pile or an accreted ice
foot. The global pressures reduce by 31% to 33% when the effe-
ctive indenter diameter is taken to be 2.86 times the structu-—
ral diameter. However, the global force increases by a factor
of 1.92 to 1.99. Two extreme scenarios can be considered to
estimate the global force felt by the structure when there is
a grounded rubble pile: (i) thé entire global force is
transmitted to the structure, which in turn transmits it to
the foundation, and (ii) both the structure and the grounded
rubble pile resist the global force, each transmitting to the
foundation a force proportional to its contact area with the
foundation. Under the first scenario, which is probably
overconservative, the global force on the structure is 97% to
99% greater than that without any rubble pile. Under the
second scenario, which may be reasonable only if the rubble
pile is consolidated and grounded firmly in the foundation
soil such as in the case of constructed ice packs, the global

force on the structure is only about 25% of that without the
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rubble pile. This explains why constructed ice packs serve to
reduce ice force acting on the structure. The results for the
transversely isotropic material are identical to that from the
isotropic analysis, although the absolute value of the global
force for the anisotropic éase is greater than that for the
isotropic case by a factor of 1.12. '

Cases 7 and 14 show that for B1 equal to 1 (isotropic)
and 3, the two sets of values for the material constants a and
N lead to ice pressures for the roller condition which differ
by a factor of 1.19 and 1.30, respectively. However for N=3
and the corresponding a, and B8] varying between 1 and 5 (cases
l to 3, 8 to 10, 15 to 17, 19 and 20), global ice preséures
vary by a factor of 1.10, 1.12, and 1.13 for the fixed, roller
aﬁd free conditions, respectively. This indicates that the
degree of anisotropy B3] is approximately two to three times
less important than the actual values of a and N.

Calibration with Approximate Solutions -- The global

pressures for cases 4 through 7 indicate the influence of ice
sheet velocity U, indenter diameter D, and material constants
a and N on the results. 1In order to provide perspective and
calibration with solutions based on approximate methods of
analysis, the upper bound solution presented earlier
corresponding to a two-dimensional velocity field obtained by
superposing a uniform flow and a doublet, is considered. The

resulting kinematic model resembles the flow of an infinite
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ice sheet past a circular indenter with the interface matching
most the roller condition. According to the solution, the
global pressure is proportiénal to (U/D)l/N. If this
variation is valid, the ratio of global pressures in cases 4
to 6 with case 2 should be 0.54, 1.16 and 0.70, respectively.
The finite element analysis predicts the ratios to be 0.54,
1.17 and 0.69. For the two sets of material constants in
cases 7 and 2, the approximate solution predicts a ratio of
1.17 while the finite element analysis predicts a ratio of
1.19. 1In all cases, the effect of changes in U, D, a and N on
the finite element solutions is almost identical to that
predicted by the upper bound, creep law solution. This
suggests that the form of the upper bound solution for
predicting global pressures is valid.

The approximate upper bound formula may be expressed as

given below (refer to Appendix D for a detailed derivation):

= 0(8y) T (B = £ 1N (5.23)

P

— ) == =

Dt Pl vz me3 vz 4 p |
where P is the global force, U is the ice sheet velocity, and

Tp is the theoretically obtained ratio of global pressures for

the anisotropic and isotropic cases which is a function of

only B3, i.e.,

. Bl (5.24)
Poasp-1)/311/"

where n=2N/(N+l1). Note that rp=l under isotropic conditions,




179

i.e., B1=1l, and that I'p=(3/4)1/n as B1+w. For 2.5<N<4, this
asymptotic value varies between 0.818-0.835. A fraction equal
to 98.5% of the asymptotic value is reached at B3=5. The
factor © is used to modify the upper bound solution, which
corresponds to a plane'strAin condition as a result of the
two-dimensional kinematic field selected, in order to be able
to apply it under plane stress conditions. Ponter et al.'s
(1983) analysis for both plane strain and plane stress based
on the reference stress method can be used to derive the
factor by which to divide the approximate solution for
applying it under plane stress conditions. Ponter et al.'s
analysis yields ©6=0.5 for the isotropic case. On the other
hand as Bj+*», i.e., the material becomes infinitely strong
transverse to the plane of isotropy, the difference between
the plane strain and plane stress conditions disappears.
Thus, the ratio of the global pressures at these two extremes
of anisotropy is equal to Ow(3/4)1/n/0.5, which for N=3 is
1.656» and for N=4 is 1.670,. Table 5.2 shows that case 11
with N=3 and 83=5 predicts the ratio of global pressures to be
1.124 which suggests that 0.20.69. The variation of © with 83
may be expressed as:

O = 0.69 - 0.19%exp[-0.7(81~1)] (5.25)
Table 5.2 shows that the predictions based on Egs. 5.23 to
5.25 differ from the finite element solutions by less than

10%. The fixed condition is obtained by multiplying Eq. 5.23
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by 1.27, while the free condition uses a multiplying factor of
0.5 (Table 5.3).

Local Pressures -- The maximum (peak) interface normal

stress for each of the twenty simulations is listed in Table
5.2. The table also 1ists.the maximum interface shear stress
for the fixed cases. There are no interface shear stresses
for the roller and free cases. Notice that in all cases the
maximum normal pressure is approximately 0.36 to 1.16 times
the global pressure, and not several (e.g., three) times the
global pressure.

The maximum normal stress for the fixed condition is
lower than that for the roller condition by 16% to 23%,
although a reverse trend is observed for global pressures.
This occurs because part of the force in the fixed condition
is carried by interface shear spress. On the other hand, the
maximum normal stress for the free condition is about zero to
three percent higher than that for the roller condition.
There are no interface stresses on the downstream side for the
free condition due to lack of contact between the ice sheet
and the indenter. The small level of stresses that exist in
the predominantly rigid continuum on the downstream side are
transmitted to the structure from the upstream side, thereby
increasing the normal stresses on that side by the zero to
three percent mentioned above.

Comparison of the local and global pressures shows that
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TABLE 5.3 - Multiplying Factors For Approximate Model

({Eg. 5.23)
Condition Global Pressures Maximum Interface
Normal Stress
Roller 1.00 0.56
Fixed 1.27 0.46
Free 0.50 0.57

Note: Factor for Maximum Interface Shear Stress in
Fixed Condition = 0.33
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the ratio of the maximum normal interface stress to the global
pressure is approximately 0.36 for the fixed condition, 0.56
for the roller condition, and 1.14 for the free condition.
Furthermore, the variation of local pressures with U, D, a and
N is similar to that for global pressures. Thus
multiplication of Eq. 5.23 by 0.46, 0.56, and 0.57 can be used
to estimate the respective maximum normal pressures (Table
5.3). In a similar fashion, the maximum interface shear
stress for the fixed condition may be estimated from the
equation with a multiplication factor of 0.33.

For purposes of design it is necessary to consider not
only the maximum values of normal stress but also its
distribution on the structure. The design of individual
structural components is typically based on a tributary loaded
area. It is possible that the average integrated stress on
this area due to contact with the ice sheet is significantly
less than the point maxima of stress. Further, the average
stress may reduce for structural components which have larger
tributary areas. Figures 5.3 and 5.4 present the normal
stress distributions on the interface for the isotropic cases.
Note that the normal stresses are always zero where the
indenter is tangential to the direction of ice sheet movement
(i.e., angle equal to zero degrees). At the end of the first
time step where the solution is predominantly elastic, the

distributions are cosinusoidal as one may expect. However as
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steady state is reached, there is a tendency for the
distributions to become rectangular or uniform. The
distribution is more rectangular for the free and roller
conditions than for the fixed condition which appears to be
predominantly cosinusoidalhdue to lower stress levels, as well
as for the N=4 case than for the N=3 case since an increasing
value of N makes the ice behave more like a rigid-plastic
material. The figures also show that downstream interface
stresses are zero for the free condition. The distributions
are not affected, at least visually, as U, D, N and B3] are
varied, although they have to be scaled according to the
maximum normal stresses in Table 5.2. A conservative design
approach may be to assume a uniform distribution of stresses
bésed on the maximum normal interface stress. The normal
stress distributions on the interface corresponding to B831=5 is
presented in Fig. 5.5, which shows that the Stress
distributions are very similar to the isotropic cases.

A careful consideration of the interface stress levels
sheds some light on which of the three conditions, fixed,
roller or free, is realistic. Figure 5.6 shows the
distribution of interface shear stresses for the fixed
condition. At steady state, the distribution is predominantly
sinusoidal with the maximum value of 0.62 MPa occurring at the
tangent point. The shear strength of adfreeze bond and sea

ice as reported in the literature (Gershunov, 1984, and
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Figure 5.6 Shear Distribution on Interface for Fixed
Condition at Steady State for 81=l.
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Oksanen, 1981,1983) varies over a wide range 0.02-1.38 MPa.

It is very likely that either the adfreeze bond will give way
or the ice will fracture in shear over a significant fraction
of the indenter perimeter. In addition, for the typical range
of effective strainrates close‘to the downstream tip of the
indenter, the tensile strength of ice is less than the
downstream normal interface stresses for the fixed and roller
conditions, bqth of which are tensile. Once again, if the
adfreeze bond does not give way, a tensile fracture may occur
in the ice over the perimeter close to the interface on the
downstream side. Thus, for local pressures the use of the
free condition should be preferred. The choice will be
conservative over the fixed condition and, marginally so, over
the roller condition. However, the free condition may be
unconservative for global pressures if the indentation problem
is one in which the structure is surrounded by an infinite ice
sheet and it is possible for frictional stresses or adfreeze
bond to develop at the interface.

Comparison with Pressure—-Area Curves —-- Pressure-area

curves are often constructed to help designers obtain the
average pressures over tributary loaded areas for structural
components (Bruen et al., 1982). A typical curve developed by
Sanderson (1984b) is shown in Fig. 5.7. The darkly shaded
areas on the figure correspond £o actual measurements of ice

pressure under widely varying conditions, while the lightly
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shaded areas represent Sanderson's extrapolation of the
measurements. The dark regions in the extreme left are from
laboratory indentation tests such as those of Frederking and
Gold (1975), and Michel and Toussaint (1977). The central
region reflects measurements ffom ice breakers traveling in
the Arctic, while the two smaller regions on the right
correspond to global forces on artificial islands estimated
from pressure sensor measurements in the ice sheet. The
contact area is defined as the indenter area of contact for
the laboratory and artificial island data. For the ice
breaker data, the contact area is the local area over which
the pressure measurement is made and not the form area of the
ice breaker. This figure shows that for an artificial island
with a contact area of 200 m2, the indentation pressure may be
around 1 MPa. However for a local area of 10 m2 on the same
structure, the indentation pressere may be around 3 MPa.

The local to global pressure ratio of three obtained from
the pressure-area curve seems to contradict the findings in
the previous subsection. Fortunately, this is not so. If the
contact area in Fig. 5.7 is interpreted as Dt, then a smaller
contact area implies a smaller indenter diameter if the ice
thickness remains unchanged. The effect of indenter diameter
is well modelled by Egq. 5.23. A plot of the maximum normal
interface pressure estimate from the equation, under free

interface conditions and assuming isotropy with N=3, leads to
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the lower solid line in the figure. Equation 5.23 is
appropriately modified to account for transition from plane
stress to plane strain using Ponter et al.'s reference stress
method (1983). This affects the curve, in an insignificant
manner, over the region 1-10 m2. When the effective
strainrate, i.e., (8/V3)U/D, exceeds 5le‘4 s~1, ice is
assumed to have fractured (crushed) and the uniaxial strength
is capped at 5.9 MPa, leading to the flat portion of the curve
on the extreme left. The predicted behavior provides an
excellent match to Fig. 5.7. Thus, a more appealing
interpretation of the figure is to consider the contact area
as the indenter area (Dt in our case) and not the tributary
loaded area for a structural component, and the indenter
pressure corresponding to a given contact area as the maximum
normal interface pressure fo; that indenter. The distribution
of the interface stresses may be assumed uniform over the
indenter area of contact as concluded earlier. However, a
different boundary value problem involving a smaller contact
area, as opposed to contact over half the perimeter in the
free condition may lead to interface pressures that differ
from the current prediction.

The upper solid line corresponds to an extreme level of
anisotropy, i.e., B1=5. For contact areas greater than 10 m2
where plane stress conditions exist, the two lines only differ

by a factor of 1.2.
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The key assumption in generating the analytical curve in
Fig. 5.7 concerns the choice of U. The value of 0.195 m/hr
considered here is based on data for an artificial island just
prior to "breakout" or macrocracking, which leads to an
excellent match between prediéted and measured indentation
pressures for the structure. However, significantly higher
velocities do occur in the field for which £he current
predictive models based purely on a continuum orthotropic
power-law creep model will lead to increasing pressures.
Fracture in ice will be the key_mechanism that limits
pressures generated under higher velocities.

Multiaxial Behavior of Ice Sheet -- A study of the

multiaxial behavior of an ice sheet during indentation in the
creeping mode provides clues to likely failure modes,
particularly fracture. Most forms of fracture (crushing,
spalling, splitting) initiate aé a result of tensile strains
perpendicular to the crack direction. Even if the applied
loads at the element level are not tensile, it is possible for
tensile conditions to occur in a rotated frame of reference,
e.g., a 45° rotation in the case of pure shear.

Stress contours identifying the compression-compression,
compression-tension, and tension-tension regions in the ice
sheet are generally similar for both the isotropic and
anisotropic material models, i.e., (a) tensile stresses occur

almost all over the ice sheet, (b) the compression-compression
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region on the upstream side is much smaller for the free
‘condition than for the fixed condition, and (c) under free
interface cbnditions the relatively small downstream stresses
are predominantly tension-tension. The biaxial stress state
at the first time step.is compression-tension for all the
cases except for the fixed condition where it is compression-
compression. As creep starts to dominate, all the cases tend
to compression-compression. Figures 5.8 and 5.9 show, for
the isotropic model, how this compression-compression region
grows in time for the fixed and free cases. The region is
much larger for the fixed condition thaﬁ for the free
condition. The roller condition is somewhere in betweén
although it resembles more the free condition. Biaxial
tension tends to occur on the downstream side, while
compression-tension states of stress are present on both
sides. Figures 5.10 and 5.11 show that increésing anisotropy,
i.e., B1, leads to increasing compression-compression and
tension-tension regions. Experimental evidence for
compression-tension states of stress (Haynes, 1973) shows that
the occurrence of even small tensile stresses weakens ice
considerably, leading to premature fracture when compared with
uniaxial tensile loading. |

Figure 5.12 shows the strain fields, which are more
relevant to explaining fracture initiation. The strain fields

also are very similar for isotropic and anisotropic material
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(a) Time Step 1 (b) Time Step 20

Figure 5.8 Biaxial Stress States for Fixed Condition
(8,=1)
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(2a) Time Step 1 (b) Time Step 20

Figure 5.9 Biaxial Stress States for Free Condition
(Bl=1)
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c-C
(a) Isotropic Case (81=1) (b) Anisotropic Case (Bl=5)

Figure 5.10 Biaxial Stress States at Steady State for

Fixed Condition.
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(a) Isotropic Case (Bl=1) (b) Anisotropic Case (Bl=5)

Figure 5.11 Biaxial Stress States at Steady State for

Free Condition.
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behavior. The strains are smaller as B3 increases for the
roller and free conditions but remain almost unchanged for the
fixed condition. The reduction in strains is associated with
the increase in lateral confinement near the upstream and
downstream tips of the indenter which in turn significantly
affects the behavior of transversely isotropic sea ice.
Lateral confinement effects are smaller for the fixed
condition since the influence of anisotropy is more evenly
distributed over the interface due to the presence of
interface shear stresses. The peak values of these stresses
occur not at the tips but at points tangential to the
direction of the ice movement. The strains are
compression-tension almost everywhere on the ice sheet with
ténsile strains exceeding 0.001 at steady state. Since
tensile failure strain for sea ice is about 0.001 or less for
strainrates greater than 10~7 s~1 under just uniaxial loading,
it seems likely that cracking will occur even before steady
state is reached. Similar conclusions apply for the free
condition, the only difference being that downstream strains

are negligible.

5.6 SUMMARY

This chapter developed and applied a finite element
method of analysis to study the effect of sea ice indentation
in the creeping mode. Numerical simulations of ice-structure

interaction for a rigid cylindrical indenter under plane
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stress conditions, a problem of general interest for
structural concepts in the Arctic, and a transversely
isotropic elastic - power law creep model for sea ice showed
‘that:

1. Global forces vary by.a factor of 2.5 depending upon
whether the interféce condition is fixed (infinite
adfreeze bond strength), roller, of free (no adfreeze
bond strength or interface friction). The fixed
condition is about 1.3 times and the free condition
about 0.5 times the roller condition.

2. Finite element predictions of global forces and local
pressures differ from a (approximate) modified upper
bound solution by less than about 10% for varying
velocity, indenter diameter, and material constants.

3. Anisotropy, as represented by the stress ratio B3
varying between 1 and 5, can cause global forces to
increase by almost 15 percent depending upon whether
the interface condition is fixed (infinite adfreeze
bond strength), roller, or free (no adfreeze bond
strength or interface friction). The factor is 1.10
for the fixed condition, 1.12 for the roller
condition, and 1.13 for the free condition.

4. The ratio of maximum normal interface pressure to
global pressure approximately varies in the range

0.36-1.16 depending upon the interface condition. It
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is 0.36 for the fixed condition, 0.56 for the roller
condition, and 1.16 for the free condition.
Anisotropy can cause maximum (peak) normal interface
pressures to increase by almost 20 percent depending
upon the interfacé condition. The factor is 1.07 for
the fixed condition, 1.16 for the roller condition,
and 1.19 for the free condition. The interface shear
stress for the fixed condition essentially remains
unchanged.

Pressure-area curves should be considered as
providing the maximum normal interface pressure for a
given indenter area of contact (form area), rather
than the average integrated normal pressure over a
tributary loaded area for a structural component. It
is conservative to assume a uniform or rectangular
distribution of the‘local pressure over the indenter
area of contact for purposes of design.

Tensile stresses, strains and strainrates occur
almost all over the ice sheet, and may be the key to
explaining fracture behavior during indentation.
While biaxial compression and tension states tend to
occur for stress on the upstream and downstream
sides, respectively, the state of strain is almost
always compression-tension. The levels of tensile

strain are often sufficient to cause cracking even
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before steady state creep is reached.

8. Anisotropy leads to an increase in the size of the
compression-compression and tension-tension states of
stress on the upstream and downstream sides,
respectively, of the‘indenter.

9. Anisotropy leads to decreasing strains for the roller
and free conditions but to almost no change for the
fixed condition. This is associated with the
increase in lateral confinement near the upstream and
downstream tips of the indenter which in turn
significantly affects the behavior of transversely
isotropic sea ice. Lateral confinement effects are
smaller for the fixed condition since the influence
of anisotropy is more evenly distributed over the
interface due to the presence of interface shear

stresses.

The possible effect of a grounded rubble pile or accrefed
ice foot on ice pressures was assessed by defining an
effective indenter equal to a multiple (2.86) of the
structﬁral diameter. This resulted in a factor of 1.97 to
1.99 increase in global force. In the case of a grounded
rubble pile, it would be overconservative to consider that all
this force is transmitted to the foundation by the structure.
On the other hand, the force transmitted to the foundation by

the structure would decrease by a factor of about 4.0 if both
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the structure and the grounded rubble pile could transmit a
force proportional to the contact area of each to the
foundation. This may be reasonable only if the rubble pile is
consolidated and grounded firmly in the foundation soil such
as in the case of construcfed ice packs.

The numerical simulations also showed that (i) even a
factor of two uncertainty in velocity will affect ice
pressures only by about 20-30%, (ii) variability in average
material constants for an isotropic power-law creep model may
yield ice pressures that vary by about 15-30%, and (iii) the
uncertainties in pressures resulting from variability in the
degree of anisotropy is approximately two to three times less
important than the variability in the reference power-law
constants, -a and N. However, experimental data for sea ice
strength can vary by almost a factor of five. As a result the
actual vafiation in the power-law constant can be much higher
than that considered here. Further, improved material models
that include strain softening, fracture and temperature
effects may have an important influence on ice pressure
predictions. 1In particular, fracture in ice will be the key
mechanism that limits ice pressures generated under the
significantly higher velocities that occur in the field when
compared with the value just prior to "breakout" or
macrocracking considered here.

Further research is required to (a) predict the level of




204

force that can be directly transmitted to the foundation by a
rubble pile, (b) study the influence of boundary value
problems other than "breakout" on pressure-area curves, and
(c) study the influence of improved material models that
consider damage, temperature gfadients, and fracture in

problems of ice-structure interaction.
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CHAPTER SIX
CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH

6.1 SUMMARY

A rate-sensitive constitutive model for describing the
mechanical behavior of sea ice is developed and then applied
to the study of steady indentation problems in the creeping
mode. The constitutive model combines a pressure-insensitive
potential function description for deriving creep deformations
based on the associative flow rule and a pressure-sensitive
surface to describe ultimate failure by macrocracking leading
to yielding or fracture. The constitutive model is
characterized by its ability to:

(a) Decompose the various recoverable and irrecoverable
components of strain.

(b) Represent continuously damaging or strain-softening
material behavior during ductile to brittle
transition.

(c) Describe materially anisotropic material behavior.

(d) Predict first crack occurrence with a rate—-dependent
limiting tensile strain criterion. |

A finite element method of analysis is then developed and

applied to the study of sea ice indentation in the creeping
mode. Numerical simulations are performed under plane stress

conditions to predict the influence of (i) interface adfreeze
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and friction, (ii) material anisotropy, (iii) variability in
parameters of the material model, (iv) rubble pile or grounded
ice foot, and (v) ice sheet velocity on global forces and
local pressures generated on a rigid cylindrical indenter. The
results are compared with those from an approximate method of
analysis based on the upper bound theorem. In the following,
conclusions from the various contributions of this study are
summarized:

Summary of Continuum Modeling -- A rate-sensitive damage

model for describing the continuum behavior of sea ice under
variable loading conditions was presented. The model, based
on a nonlinear generalization of the Maxwell differential
formulation, is characterized by its ability to (a) decompose
the various recoverable and irrecoverable components of
strain, (b) represent continuously damaging or strain-
softening material behavior in the ductile to brittle
transition region, (c) capture the rate-dependent behavior of
sea ice with rate-independent model parameters, and (d)
describe materially anisotropic mechanical behavior.
Furthermore, the model shows strong dependency of the creep
and constant stréinrate behavior. Calibration of the model is
achieved with several independent sets of data, particularly
those for first-year sea ice. The following specific
conclusions can be drawn:

1. The uniaxial model developed here is described by 8

parameters. For comparable models, i.e., those of Sinha and
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Michel, the number of parameters is 7 and 9 respectively. It
must be recognized that Sinha's model does not capture
material damage with strain-softening, while calibration of
Michel's model with experimental data has been very limited.

2. All parameters of the broposed model, i.e., 8 for the
uniaxial model and 5 for the orthotropic generalization, can
be determined from conventional tests conducted on ice. The
experimental data base is generally adequate to determine the
model parameters. In particular, normalization of the uniaxial
strength data for salinity and temperature is a useful way of
including test results for pure polycrystalline ice in model
calibration.

3. Material damage that can be described by the continuum
model proposed here is significant in the strainrate range of
2x10-4 s~1 to 10-2 s~1. At higher strainrates the presence of
macrocracks precludes a solely continuum description of ice
behavior.

4. According to the proposed model, an ideal creep test
does not lead to primary creep strains. However if the finite
rise time required to reach the nominal stress in a creep test
is taken into account, primary creep strains are simulated by
the model. Experimental evidence appears to support this
conclusion.

5. The pressure-insensitive orthotropic model proposed
here predicts very well the plane strain uniaxial compression

tests conducted by Frederking. Further, experimental data of
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Richter-Menge et al. on first-year sea ice and that of Hausler
on saline ice indicate that sea ice is only moderately
pressure sensitive in comparison with pure ploycrystalline ice
which is highly pressure-sensitive.

Summary of Yield and Fracture Modeling =-- A rate-

sensitive model in stress-strain domain for describing the
macroscale fracture behavior of sea ice was dicussed. The
model, unified with a rate-sensitive damage model developed
for the continuum behavior of sea ice, is characterized by its
ability to (a) predict first crack occurrence with a
rate-dependent limiting tensile strain criterion, (b)
represent fracture under multiaxial states of stress with a
Drucker-Prager failure surface, and (c) distinguish the
mechanisms of multiaxial flow by creep and ultimate failure by
macrocracking leading to yiélding or fracture. Calibration of
the model is achieved with the limited existing experimental
data base. The following specific conclusions can be drawn:

1. The prediction of first crack nucleation under
uniaxial compressive creep conditions using a rate-dependent
limiting tensile strain criterion for the lateral tensile
strains arising from Poisson's effect and incompressibility of
flow compares very well with the experimental data of Gold.

2. The time to first crack occurrence tends to approach
zero as the uniaxial compressive stress approaches a value
corresponding to fracture, i.e., 5.0 MPa. At these higher

stresses, the delayed elastic strain criterion of Sinha
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continues to predict longer first crack nucleation times.

3. The prediction of first crack occurrence under
constant stress-rate conditions using the rate-dependent
limiting tensile strain criterion agrees very well at low to
intermediate stressrates With\the analysis of Sanderson and
Child based on the delayed elastic strain criterion. At high
stressrates, the proposed model predicts a éignificantly lower
stress for nucleation of the crack.

4. A rate-sensitive and isotropic Drucker-Prager failure
surface is used to describe yield of ice under compressive
states of stress and fracture of ice whenever a tensile stress
is present. The constants of the model are derived from two
uniaxial tests, one in tension and the other in compression.
In the latter case, the compressive stress at which the first
crack nucleates using the rate-dependent limiting tensile
strain criterion defines the "yield" point.

5. The ratio of the yield stress in uniaxiai compression
to the fracture stress in uniaxial tension obtained from the
Drucker-Prager formulation appears to provide the best match
to data from the tensile triaxial tests of Haynes. |

summary of Approximate Analysis of Sea Ice Indentation --

The predictions of global and local indentation pressures in
the creeping mode of sea ice deformation, accounting for the
spatial variation of strain-rates, using the upper bound and
the strain path methods, leads to the following specific

conclusions:
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Kinematic Model B, based on the superposition of a
uniform flow and a doublet, models the ice movement
survey data obtained from an artificial island in the
Beaufort Sea than Kinematic Model A, which is based on
the superposition of a uniform flow and a source.

The maximum strain rate for Model A occurs at the
stagnation point on the ice bluff—body interface and
is equal to U/ro, while for Model B it occurs at the
same point and is equal to 2U/rg,.

The stress field decays as r=2/N for Kinematic Model A
and as r~3/N for Model B, where N is the power-law
index. The stress field is axisymmetric for Model A
and not so for Model B.

In the creeping mode of ice deformation, the local ice
pressures are of the’same order of magnitude as or
lower than the global pressures. The local pressures
are not several times the average global pressure as
is commonly believed. Even if the global pressures
are reduced, e.g., by a factor of three, to account
for scale (fracturing) effects, the local pressures
based on the strain path method will only be 1.5 (and
not three) times the upper bound global pressure
neglecting interface friction.

Under essentially plane strain conditions, Kinematic
Model B predicts global pressures that are inbetween
that of the Ponter et al. model and the API model.

For a typical artificial island just prior to
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break-out with ice movements of less than 1 ft/hr
(85x10-6 m s—1), Model B predicts a pressure
(neglecting interface friction) of approximately 530
psi (3.7 MPa).

6. The global pressures p#edicted by the upper bound
method are very sensitive to the statical traction
boundary conditions at the ice-structure interface.
For Kinematic Model B, assuming no friction at the
interface may lead to overconservative pressure
estimates.

A key finding of this study is that for the
rate-dependent material models describing sea ice behavior,
interface adfreeze and friction stresses can significantly
influence both local and global ice pressures. This has major
economic consequences for platform design. Incorporation of
these "non-conservative" stresses within the bound method may
yield more accurate global ice pressures, but the solutions
will not necessarily be upper bounds. More exact estimates of
both local and global ice pressures using the strain path
method may be obtained by postulating kinematic models that
more correctly model the interface conditions. However,
currently available field data does not provide adequate
resolution of the ice movements in the immediate vicinity of
the structure to calibrate such models. In conclusion, it
appears that the development of numer ical models based, for
example, on the finite element method of analysis is necessary

for more realistically studying ice-structure interaction
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problems where both global and local pressures are of
interest.

Summary of Finite Element Analysis of Sea Ice Indentation

-- A finite element method of analysis was developed and
applied to study the effect of sea ice indentation in the
creeping mode. Numerical simulations of.ice—structure
interaction for a rigid cylindrical indenter under plane
stress conditions, a proﬁiem of general interest for
structural concepts in the Arctic, and a transversely
isotropic elastic - power law creep model for sea ice showed
that:

l. Global forces vary by a factor of 2.5 depending upon
whether the interface condition is fixed (infinite
adfreeze bond strength), roller, or free (no adfreeze
bond strength or interface friction). The fixed
condition is about 1.3 times and the free condition
about 0.5 times the roller condition.

2. PFinite element predictions of global forces and local
pressures differ from a (approximate) modified upper
bound solution by less than about 10% for varying
velocity, indenter diameter, and material constants.

3. Anisotropy, as represented by the stress ratio B3
varying between 1 and 5, can cause global forces to
increase by almost 15 percent depending upon whether
the interface condition is fixed (infinite adfreeze

bond strength), roller, or free (no adfreeze bond
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strength or interface friction). The factor is 1.10
for the fixed condition, 1.12 for the roller
condition, and 1.13 for the free condition.

The ratio of maximum normal interface pressure to
global pressure approximately varies in the range

0.36-1.16 depending upon the interface condition. It

‘is 0.36 for the fixed condition, 0.56 for the roller

condition, and 1.16 for the free condition.
Anisotropy can cause maximum (peak) normal interface
pressures to increase by almost 20 percent depending
upon the interface condition. The factor is 1.07 for
the fixed condition, 1.16 for the roller condition,
and 1.19 for the free condition. The interface shear
stress for the fixed condition essentially remains
unchanged.

Pressure—-area curves should be considered as
providing the maximum normal interface pressure for a
given indenter area of contact (form area), rather
than the average integrated normal pressure over a
tributary loaded area for a structural component. It
is conservative to assume a uniform or rectangular
distribution of the local pressure over the indenter
area of contact for purposes of design.

Tensile stresses, strains and strainrates occur
almost all over the ice sheet, and may be the key to

explaining fracture behavior during indentation.
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While biaxial compression and tension states tend to
occur  for stress on the upstream and downstream
sides, respectively, the state of strain is almost
always compression-tension. The levels of tensile
strain are often éufficient to cause cracking even
before steady state creep is reached.

8. Anisotropy leads to an increase in the size of the
compression-compression and tension-tension states of-
stress on the upstream and downstream sides,
respectively, of the indenter.

9. Anisotropy leads to decreasing strains for the roller
and free conditions but to almost no change for the
fixed condition. This is associated with the
increase in lateral confinement near the upstream and
downstream tips of the indenter which in turn
significantly affects the behavior of transversely
isotropic sea ice. Lateral confinement effects are
smaller for the fixed condition since the influence
of anisotropy is more evenly distributed over the
interface due to the presence of interface shear
stresses.

The possible effect of a grounded rubble pile or accreted
ice foot on ice pressures was assessed by defining an
effective indenter equal to a multiple (2.86) of the
structural diameter. This resulted in a factor of 1.97 to

1.99 increase in global force. 1In the case of a grounded
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rubble pile, it would be overconservative to consider that all
this force is transmitted to the foundation by the structure.
On the other hand, the force transmitted to the foundation by
the structure would decrease by a factor of about 4.0 if both
the sfructure and the grounded‘rubble pile could transmit a
force proportional to the contact area of each to the
foundation. This may be reasonable only if the rubble pile is
consolidated and grounded firmly in the foundation soil such
as in the Case of constructed'ice packs.

The numerical simulations also showed that (i) even a
factor of two uncertainty in velocity will affect ice
pressures only by about 20-30%, (ii) variability in average
material constants for an isotropic power-law creep model may
yield ice pressures that vary by about 15-30%, and (iii) the
uncertainties in pressures resulting from variability in the
degree of anisotropy is approximately two to three times less
important than the variability in the reference power-law
constants, a and N. However, it must be noted‘that
experimental data for sea ice strength can vary almost by a
factor of five. As a result the actual variation in the
power-law constant can be much higher than that considered
here. Further, improved material models that include
strain-softening, fracture and temperature effects may have an
important influence on ice pressure predictions. In
particular, fracture in ice will be the key mechanism that

limits ice pressures generated under the significantly higher
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velocities that occur in the field when compared with the
value just prior to "breakout" or macrocracking considered

here.

6.2 RECOMMENDATIONS FOR FUTURE RESEARCH

It is apparent from the present work that many aspects
related to the prediction of global and ‘local ice pressures
actihg on strutures in the Arctic need further study and
verification. The following discussion focus on the areas
covered in this thesis:

l. In the area of constitutive modeling, additional
research is needed to resolve several questions,
including (a) the presence or lack thereof of primary
creep strains in ideal creep tests, (b) the possible
pressure sensitivity of the damage parameter, (c) the
adequacy of the incremental damage accumulation model
based on Miner's rule particularly for variable
loading histories, (d) the generation of hysteresis
loops during unloading/reloading and cyclic loading,
(e) the value of peak stress at failure in
stress-strain curves obtained from tests conducted at
low stressrates (i.e., lower than 0.1 MPa s—1), (f)
the extent of stress relaxation in sea ice, and (g)
the equivalence, if any, in the triaxial behavior of
pure and sea ice. Both experimental and theoretical

research is very much needed to better characterize
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the multiaxial behavior of sea ice particularly under
cyclic loading.

In the area of yielding and fracture, additional
research is needed to address the following concerns:
(a) the influence ofvtemperature on the fracture

strength in tension and compression and the strain

. and strainrate at which it occurs, (b) experimental

data under biaxial and triaxial loading conditions to
better define the failure surface defining yield in
compression and fracture in tension, and its use in
the development of an orthotropic failure surface,
and (c) the equivalence, if any, in the strains and
triaxial behavior of pure polycrystalline ice and sea
ice.

The deficiency of the strain path method in
predicting the correct.interface stresses may be
improved by the used of non-ideal, viscous fluid to
obtain a better approximation to the interface
conditions. This would then result in better
analytical predictions of the local ice pressures.
The upper bound prediction of the global pressures
will also improve as a result.

From the numerical simulations, further research is
required to (a) predict the level of force that can
be directly transmitted to the foundation by a rubble
pile, (b) study the influence of boundary value

problems other than "breakout" on pressure-area
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curves, and (c) study the influence of improved
material models that consider‘damage, temperature
gradients, and fracture in problems of ice-structure
interaction.

Several approacheé are available to account for
cracking in a finite element framework. Two of the

more common approaches are the discrete cracking

models which follow individual discrete cracks

between elements and the smeared cracking models

which treat the gross (smeared) effect of cracks in
an elenient. The latter approach has been preferred
in finite element analyses of concrete since it is
computationally far more convenient. An added
advantage is that smeared crack models can be
extended easily to allow for an objective energy
release rate criterion for fracture propagation. The
resulting theory, called the blunt crack band theory,
will require the development of an appropriate
modification to the rate-dependent limiting tensile
stress fracture criterion. A major research effort
should be undertaken to (i) extend the plane stress
finite element analysis computer code to incorporate
smeared cracking models, and (ii) implement the
constitutive model, developed in this thesis, in the
program. The influence of fracture on both global
forces and local pressure may then be quantified

through numerical simulations.
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APPENDIX A

MATRICES USED IN CONSTITUTIVE MODEL
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2
3(a1+a3)a2 _ 3ala2a3 _ 3ala2a3
*2 * 2 *2
a a a
2
_ 3ala2a3 3(al+a2)a3 _ 3ala2a3
%3 ) *2
H = a a . a ,
3a1a2a3 3ala2a3 3(a2+a3)al
- *2 - *3 *2
a a a .
2
asg
0

where a* is given by:

a* = (ajap + aja3z + azaj)

o
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APPENDIX B

ORTHOTROPIC MATERIAL PARAMETERS

B.1 DEFINITION OF SYMBOLS

In order to derive the material parameters it is
necessary to choose a reference direction. For this purpose
the sea ice is assumed to lie on the y-z plane with its c-axis
pointing along the y direction. The stress ratios are
calculated using the strengths obtained from the same constant
strainrate tests in the respective directions. The number in

the parenthesis indicate the normal range of their values.

B1 = ratio of the stress in x direction to the stress in
y direction (2.0-5.0)

Bp = ratio of the stress in z direction to the stress in
y direction (0.5-0.9)

B3 = ratio of the stress at 45° on y-z plane to the

stress in y direction (0.25-0.50)
Bg = ratio of the stress at 45° on x-y plane to the
stress in y direction (0.25-0.50)
Bs = ratio of the stress at 45° on z-x plane to the
stress in y direction (0.25-0.50)
The coefficients, by to bg, are the constants for the
uniaxial power-law (Eq. 5.5) along the y, x and z directions,
and the 45° axes on the y-z, x-y and 2z-x planes respectively.

It has been experimentally verified that N is, in general,
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independent of the loading directions for the orthotropic sea
ice. Furthermore, without loss of generality, we can set

ai=1.

B.2 UNIAXIAL TEST IN X-DIRECTION

The uniaxial test is performed in the x direction. This
implies that only normal stress in the x direction is present
and all other stresses are zero. Using Egs. 5.8 and 5.9 the

strainrate in the x direction is given as:

.
w
2
et
[
W

= — ace— (—5—) o (B.1)

where ¢ and o represent the strains and stresses respectively
with the subscript indicating their directions. Using Eq. 5.3

the effective stress is obtained as:

) oxx (B.2)

Substituting Egq. B.2 in Egq. B.1l we have, with aj=1l:

N+1

_ 3.2 N
XX a(l + az) Txx (B.3)

1 + a

The uniaxial power-law in the x direction may be written as:

Exx = bZONxx (B.4)
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Comparing Egs. B.3 and B.4 and solving for aj with

81=(a/b2) /N, we obtain:

2N
- N+l _ , (B.5)
a, = (L +ay6  ~ -1

B.3 UNIAXIAL TEST IN Z-DIRECTION

Using Egs. 5.8 and 5.9 and proceeding as before we have:

a2 + 33
_— = —--——————a I aO'e GZZ (B‘ 6)
1 2

The effective stress is given by:

1
a, + a, 2
6 = (=2—=) ¢ (B.7)
e a; + a, zz
Substituting Eq. B.7 in Eg. B.6 we get:
. a2+ a N;l n
f22 = 3T v a,) 2z (B.8)

The uniaxial power-law in the z direction may be written as:

€57 = b3oN,, (B.9)
Comparing Egs. B.8 and B.9, with 82=(a/b3)l/N, we have:
2N
_ N+1 _
a2 = (a2+ a3)B2 1 (B.10)
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It is now possible to express the orthotropic material
parameters, aj and a3, in terms of the B;j's. Solving Egs. B.5

and B.10 for ajs and a3 in terms of B} and By, we obtain:

a; = 1 . ' (B.11)
2N 2N 2N
gNFI_ pN#T ) _ N+,
a, = - % 2 1 (B.12)
2 2N 2N 2N :
N+1 N+1 N+1
2N 2N 2N
BN+1 BN+1(1 _ BN+1)
a, = - —+ 2 1 (B.13)
3 2N 2K 2N :
N+1 N+1 N+1
By B, (L + B )

B.4 UNIAXIAL TEST AT 45° ON Y-7Z PLANE

In this test, the stress, applied at 45° to the
coordinate axes in the y-z plane, is denoted by o45. The
corresponding strain is denoted by e45. The effective
stress is computed using Eg. 5.3 after performing a Mohr's

circle transformation and is given by:

1l + a 025
3 + 2a5)_—z— (B.14)
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Using Egs. 5.8 and 5.9, the inplane strains are computed as:

. _ 1 N

eyy = K——6 0'45 (B-lS)
a

. _ 3 N ’

szz = K—g 045 . (B.16)
a

. _ 5 N

Cyz = k= 95 (B.17)

where
N+1 a-+ a N-1 N-1
_ 3 2 1 3 2 1
KreGnz) a2 T G

Using Mohr's transformation, the strainrate at 45° to the

coordinate axes is obtained as:

. 1 21t 23 N

845 =7 (——5——— + 2a5) Ko45 (B.18)
The uniaxial power-law may be written as:

€45 = bgolN,s (B.19)

Comparing Egs. B.1l8 and B.19 with 83=(a/b4)1/N and n=2N/(N+1),

we get:

1l + a
-2 (B.20)

In order to obtain parameters a4 and ag, similar 45°

tests are conducted in the x-y and z-x planes respectively.
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These parameters can be expressed in terms of the Bi's in the

same way as ag and are given as follows:

1l + a, -n -n
a4 = —'——6'—-"— (484 - 82 ) (B.Zl)
1 + a
.2 -n _
ag = 3 (485 1) (B.22)

For a transversely isotropic case, B2=B3=1 and 84=8s5.
This simplifies Egs. B.11-B.13 and Eqgs. B.20-B.22 and they are

summarized as follows:

a; = 1 | (B.23)

ap = 28] -1 (B.24)
az = 1 (B. 25)
n
28
1 -n
a, = & (48, - 1] (B.26)
28"
1 -n
ag = —¢- [4 - 87" ] (B.27)
285 _
a, = —= [487" - 1] (B.28)
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APPENDIX C

FREDERKING'S TESTS

C.1 TYPE A TEST

The ice sheet 1is considered to be in the y-z plane. The
x axis is assumed to represent the out-of-plane direction.
The sea ice.is considered to be transversely isotropic i.e.,
its properties are same in any direction along the y-z plane.
The ice sheet is subjected to normal stress Oyy in the y
direction, and its in-plane movement in the 2z direction,
perpendicular to the direction of application of Oyy s is
restrained. Furthermore, stresses in the x direction are
assumed to be zero. These imply:

oxx = 0 | (C.1)

€zz = 0 (C.2)
Using Egs. 5.8, 5.9 and C.2 we have:
a2

6 = -2 | (C.3)
22 a, + at¥

2 3

Using Egs. 5.3 and C.3 we obtain:

1
azaz 3

- 1
e T T+ A, (1 + 3;‘:—33) gy (C.4)

Using Egs. 5.8 and 5.9 we have:
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) (C.5)

where the superscript c on 0Oyy implies that it is confined.

For an unconfined test we have:

: = a(e¥ )N . (C.6)

Yy Yy

where the superscript u on 0yy implies that it is unconfined.
Now if the strainrates are the same, then, we can equate

Egs. C.4 and C.5 to obtain the following ratio:

o 1 aza - gil

vy 273 N ’
Y. = = [ (1 + —=—)] (C.7)
z ou 1 + a2 a2 + a3

vy

For the case of transverse isotropy, a3=1, and Eq. c.7

simplifies to:

(C.8)

C.2 TYPE B TEST

The load is applied in the y direction. However, in this
test, stresses in the z direction are assumed to be =zero.
Furthermore, displacements are restrained in the x direction.
These imply:

Opz = 0 (C.9)

€xx = 0 (C.10)
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Using Egs. 5.8, 5.9 and C.10 we obtain:

o = ——0 (C.11)

and from Egs. 5.3 and C.ll we have:

a 1
- 1 3 2
% T Y11 + a, (l + a, + a2) oyy (C.l?)
Using Egs. 5.8 and 5.9 we have:
a N+1
° _ 1 3 2 c ,N
vy a [l + a, (1 + a, + aZ)] (oyy) (C.13)
For an unconfined test we have:
° u N
€ = a(o .
Yy ( YY) (C.14)

Now, we equate Egs. C.13 and C.14 for the same

strainrates and obtain:

+C a _ N+l
_ VY _ 1 3 2N
Yx = "u T [l + a (l ¥a, ' aZ)] (C.15)
o 3 3
Yy :
For transverse isotropy, a3 = 1, and Eq. C.15 simplifies
to:
N+1
- 2(1 + a2) N (C.16)
X 1 + 2a *

2
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C.3 TRIAXIAL TEST

In the triaxial test of a transversely isotropic ice
sheet subjected to a normal stress ¢ in the y direction, we

have the following stress state:

Oyy = O
UZZ = O‘Xx = TO (Col?)
Oxy = Oyz = Ozx = 0

where T = ratio of confining stress to axial stress. Using

the above relations in the definition of the effective stress
as given in Eg. 5.3 we get:
0 = (1l-T)o (C.18)
Next the strainrate in the y direction is obtained from

Egqs. 5.8 and 5.9 as follows:

_ N, tr N
vy a(l—-1) (oyy) (C.19)

Furthermore

: u N
eYY ( YY) » ¢ )

tr
vy 1
e = Tu - Tt (C.21)
Yy
Also,
tr
oyy—ozz = (l_T)oyy = 1 (C.22)

u u
o

g
Yy Yy
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APPENDIX D
UPPER BOUND SOLUTION

D.1 VELOCITY AND STRAINRATE FIELD

The kinematic model is obtained by superposition of a
uniform flow and a doublet. This resembles the flow of an
infinite ice sheet past a circular indenter with the interface
boundary condition similar to the roller condition. The

velocity and strain rate field in polar coordinates is given

by:
3
u, =10 (1 - —) Coss (D.1)
r
2
Lo .
Ug = —U (1 + = ) Sin® (D.2)
. aUr 2Ur%
Er = —37 = 3 Cos© (D. 3)
r
. Ur 8UO 2Ur3
€e=-r—-—+—r——a—é=— r3 COSS (D'4)
2
. . BUr aUe Ue 4Ur0

where rg is the radius of the indenter. In Cartesian

coordinates, the above set of equations can be written as:




20,2 2
[l IO(Z - Y )] 6)
U = U[1+ (D.
vy (yz + 22)2
2Urgyz
U R . T el 3 (D'7)
ZZ (y2 + 22)2
3u 2Ur2y(y2 - 322)

o = yy _ 0

€ = = (D.8)
yy 9y 5 2.3

(y= + z7)
a0 2Ur2y(y2 - 322) ,
. Z 0
22 3z 5 5 3
(y* + 27)
. 2 2 -2
. _ Yyz 1 [aUy . aUz ) 2Uroz(z - 3y ) (D.10)
VZ 2 2 ‘3z oy 2 5 3 :
(y"™ + 2z7)
Under plane strain condition, we have the following:
Exx = €xy = €xz T 0 (D.11)

The strains may also be expressed in terms of r and 6 as:

2
0Cos3e
4% r3

20r

Me

(D.12)

[}

2UrgCos36

ZZ 3
r

Me

(D.13)

. 2Urgsin3e
Eyz = ————r-—3——— (D.14)

D.2 CONSTITUTIVE MODEL

Equations 5.8 and 5.10 are now presented in a slightly
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different form containing all the nine components. Note that
the strains and the pseudo deviatoric stresses are now tensor

quantities. To distinguish this, superscripts * are used on S

and G.
Eor = A § (D.15)
§=8o (D.16)
where § is given by:
Taj+ay oA I -
3 3 3
! a1%ay ay 0
3 3 73 -
a, a, aj+a,
. 3 T3 3
G = as
asg
ae
0 ayg
as
ag
Further, the effective strainrate is obtained from:
e2-2:Tq¢ (D.17)

A

where B=aj+ap and H is given by:
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2
3(al+a3)a2 ) 3ala2a3 _ 3ala2a3
*7 *2 T2
a a a
7 2
_ 3ala2a3 3(al+a2)a3 _ 3§la2a3
*9 *2 *2
a a a
2
A ) 3a1a2a3 3ala2a3 3(a2+a3)al
B = *2 *2 *2
a a a :
0

where a* is given by:

a* =

(ajap + aga3 + azay)

0
1
ay
1
as
1
ag
1
ay
1
as
1
ag _
(D.18)
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Furthermore,

The strainrates are then given by:

1 1
¥ 17N

2284 N3 | (D. 20)

e

The components of the strainrate tensor are as follows:

al+a3o - ilo - iéo
3 XX 37yy 37zz
TN B
37 xx 3 vy 37zz
1.1 I R A M
¢« 3 _Ne™ N 3 37yy 3 ZZ ({D.21)
£ =82 %
a40xy
a5oyz
A60zx
Q49yx
asozy
— A60xz —

L3

Equation D.21 can be rearranged to give S in terms of &:

(D.22)

| s
]
>
|t
fme

where
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2a, ag ay y :
*x ~ Tx = =
a a a
a, 2a, a; o
T % *x %
a a a
a, as 2al
* T 7= *
a a a
F = 1
a4
X
as
0 ag
1
as
L
as
ag _

D.3 GLOBAL FORCE

The global force is estimated by the upper bound method
(energy approach) using:

PU < [, S dv (D. 23)

Using Egq. D.22 in Eq. D.23 we obtain:

Tr ¢ av (D.24)

pu < [, 1
A
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Substituting the expressions for e, Egs. D.8-D.1ll, and F, and

simplifying, we have:

2 4 2,2 2,2, -
N U'r 12y~ (y~=-32z7) " (a,+a,) 2, 2 2,2
f_S_TédV =f 0 1 73 +82 (z 3v7) ]dV
V= — \Y 2 2,6 *
Aly™+ z7) a as
(D.25)
Equation D.25 can be written in polar coordinates as:
2 4
. 4U°r 3(a,+a,)
Te _ 0 173 2 2 o2
fvg edv = fv L [ = Cos“30 + —ggSIH 36]av (D.26)

Now, the effective strainrate, €g, is needed to evaluate

A and is given in polar co-ordinates as follows:

2 4 2 2 2 2
. 4U%r . 3(a,a., +a,a’, +a.,a; +a,a’+2a.a.a.)
2 _ 8 0[ 173 2°3 271 371 123 0523942 Sin23e]
e 3 6 *2 a
r a 5
(D.27)
For transversely isotropic material, aj=aj3=1l, asg=
(1+2a2)/3. Equation D.27 simplifies to:
2 4
22 _ 8 _6 g (0. 28)
e 31 + 2a 6 *
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Substituting Eg. D.28 in Eg. D.19 we obtain the following

expression for A:

1 'U2r4 N-1
_ 3 _N 88 012N g
S 2a,) 6 17 (D.29)
r
Finally for transverse isotropy, Eq. D.26 reduces to:
ape 24v?r g
[,87€ av = [y av (D.30)

a1l o+ 2a,)

Substituting the expression for A into Eg. D.30 and evaluating

the integral, we obtain:

14N 1
AT ;38 N 4 4 1uU ®
[y8°e av = 2)] 303 3 0]

57T + 2a 2r

all=

N
ot (3
(D.31)

where t is the thickness of the ice sheet. Finally
introducing D=2rgp and B=aj+ap we have the following upper

bound solution:

1+N

o 31+ 3)) oW 4 N . . 4120%
2= | 3271+ 2a a

) (D.32)
2
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APPENDIX E

NONLINEAR EQUATION SOLVER

The incremental elastic stress is éiven by:

Ao =

where gcr is the

Aecy

Equation E.l can

£(ag)

D B AU - D Agcr (E.1)

incremental creep vector which is given by:

= AtAySe (E.2)
be rewritten as
= Ac - DB Au - D Agcr = 0 (E.3)

Expanding Egq. E.3 using Taylor's series and retaining only the

first two terms as in the Newton-Rhapson method, we have:

of
[as - DB AU + D deer ¥ + —5 (a*h - ad®) =0 @0
dAc
Note that:
k k :
Ao = 9547 T 9 (E.5)
k+1 k+1 _
Ao Si+v1 T % (E.6)
k+1 k _ k+1 _ Kk
i Ae™ = 9541 7 Zin (E.7)
Since the stresses are known at iteration i, i.e., 0j is
known, it follows from Egs. E.4-E.7 that
dAc = doj4] (E.8)
Substituting Eq. E.5 into Eq. E.7, we obtain:
k k 51k
of,y -9 - [DB AU+ Dae, T+ [a 71 (8541 ~ 9541) = 0
Zi+1

(E.9)
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Further, from Egq. E.3 we have:

dAe
[ 1% = [z +p —S£1%
dAo Ao

Introducing Eq. E.10 in Eq; E.9 we have:

dA¢€
[I + D —cr]kcg+1
~  TacT i+l

—i+1l
Using the o method we may write:
Og = (l-a) 0 + a Gj4+]
From Eq. E.12 it immediately follows:

doq = @ dgj+]

= ¢,+ D[B AU—Aek 1-+ D]
—-i ='= "= "—=cr =

(E.10)
aA-—e-cr]k k
T —-i+1
%41
(E.11)
(E.12)
(E.13)

In Eq. E.11, the only term that remains to be evaluated is

dAe .
—Cf | This quantity is evaluated as follows:
30,
—i+l
BAEC aAEcr
T T (E.14)
90, a0
—i+l —a
and
dAe
—Cr ~ 3 -1 ax 2 A
T = ot [AG + a. + a. ‘e 30 5 8 (E.15)
aga 1l 2 e

Equation E.1ll can now be solved for the stress by iteration.
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APPENDIX F

ANALYTICAL TESTS FOR CODE VERIFICATION

Let the test sample, which is rest;ained in the z
direction, be subjected to a constant stress in the y
direction Oy. Using Eq. 5.3 and accounting for transverse
isotropy‘the effective stress oo is obtained:

o 2a
Ue = (02 + 2 - 2 )

vy %22 l+a2°yy°zz (F.1)

From Egs. 5.8 and 5.9 the creep strain in the y and =z

directions, i.e., €yy and e€zz respectively, are given by:

. a.+a a
1 %2 2

®yy.cr A 3 Oyy T 3%z ) (F.2)
a a,+a

. _ 2+ 3ztaj

®2z,cr M 3°yy 3 ozz] (F.3)

Since the test sample is restrained in the z direction, ez5 is

zero. This implies:

o
;z + Ezz,cr = 0 (F.4)

Substituting Eg. F.4 in Eq. F.3, we obtain. the following

differential equation:
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. a,+ta, - a
2783 _ 2
ozz + EAX 3 o, = EA—§°yy (F.5)
Assuming X to be constant;'theisolutidn to the above
differential equation is given by:
a,+a a
s = ce BA2°3, . _ 2, (F.6)
ZZ 3 a2+a3 vy

where C is a constant. At time t=0, we assume that there is
no creep énd hence there is no creep stress in the
2 direction. This implies:.

ozz(t=0) = Voyy | (F.7)

Using Egs. G.6 and G.7 we get,

( "2y
c = (v- (F.8)
a2+a3

Hence the solution to the differential equation, Eq. F.5, 1is

given by:

(F.9)

O22 = [(a ¥a




